адаптер obd2 14 pin на АлиЭкспресс — купить онлайн по выгодной цене

адаптер obd2 14 pin на АлиЭкспресс — купить онлайн по выгодной цене ОБД2

Defi smart adapter w / obd set — manual

background image

Before handling (for installation personnel)

Properties for safety warning

Indicates attention needs to be paid. (Including warnings)

Indicates restricted actions. (PROHIBITED actions)

Indicates actions that need to be carried out. (MUST actions)





This product functions both with the Defi-Link ADVANCE Control Unit, and an iOS or

Android device. This product does not function alone.

To work, you need the ADVANCE Control Unit, and an iOS or Android mobile device.

※Refer to the Application User s Guide on the Defi web page regarding operations of the App.

※Please check the adaptable device list on the Defi web page.

Thank you very much for purchasing our product.
This product is an additional product for transmitting vehicle information to an iOS or Android device.

Before installing and using this product, please read this manual and the warranty card thoroughly. All

sections are for customers and installation personnels. After installation, please keep this manual and the

warranty card for future reference. In the event that this product (or the vehicle in which it is installed) is

lent to or transferred to another person, please be sure this operation manual and the warranty card

accompany the product.
Defi will not be held responsible for accidents or damages related to installation of this product.
When installing and operating this product, be sure to read the cautionary items in the operation manual

for the vehicle in which this product will be installed in addition to the manual of this product. Please

obtain a full understanding of the cautionary items and use the product accordingly. Before installing the

product, please confirm all the components are included in the package.

Safety Warning 【Please read carefully.】

In this manual, the degree of hazard arising from actions such as improper operation is separated into the

3 levels «Danger,» «Warning,» and «Caution.» In addition, instructions that must be followed for safe and

proper use of this product as well as practices that must be maintained are marked with a «Confirmation»

heading. Please read and become familiar with these sections.





Indicates a hazard that could cause death or serious personal injury if the product is

Indicates the possibility of death or serious injury if the product is mishandled.

Indicates a conceivable source of personal injury or damage to equipment if the

product is improperly operated.
Indicates an instruction that must be performed or practice that must be maintained.







Carefully consider the installation location and driver’s operation of the product before installation. Do

not install the product where it interrupts driving and the safety devices of the vehicle such as the

airbag system. Be sure not to install the adapter where it could fall. Improper installation or

operation could cause the product to fall and damage the vehicle or cause serious danger by

impeding driving.

Do not disassemble or modify this product. Such actions will not only void the warranty but also

damage or destroy the product.

Ensure that the wiring of this product does not have an adverse impact on the other wiring of the vehicle.

Do not use this product if you notice any malfunctions or it doesn t operate. Continued use while in

a faulty state could result in accidents, a fire, or electrical shocks.

Please keep children and infants away from the installation area. Children may swallow small parts or be injured in other ways.

Do not install this product in the area where safety equipment such as airbags are mounted. This may cause more

injuries in the event of an accident.

Do not install this product in vehicles which are not listed on the adaptable car list.


Ensure that the vehicle will remain stationary and turn off the engine before installing this product. Failure to do so

could result in a fire, and could make the vehicle move during the installation.

Keep the wiring away from locations which affect steering, safety and brake systems. Interfering with normal

operation of the vehicle can result in an accident or fire.

Do not install the product at the wet places. It may result in a fire caused by an electrical short circuit.

When you exchange a fuse of a cigar plug, you have to use a regulated fuse. If you set up a fuse which exceeds

braking capacity, it may cause a fire.

This product is designed for the use on 12V vehicles. Do not install this product on vehicles with 24V


Do not drop any of the components of this product. It may result in damage to the product.

Do not apply excessive force on switches/terminals. It may result in damage to the product.

Do not use wires other than the provided wires.

Do not attach wires on the body of the vehicle or engine parts as this may result in damage to the product.

Install wires away from ignition and also radio signal frequency interference as this could cause the gauges to


Please set it up so that the equipment, such as the wireless machines and cellular phones that emit electric waves,

does not touch this product. It may result in incorrect operation.

Do not expose this product to moisture, dust or direct sunlight, or place product directly in front of heat vents.

Use a dried soft cloth for cleanup. Do not use cleaners except for a neutral detergent. It may damage the product.

Be sure to follow all instructions in this manual to ensure safe installation and operation of the product.

After installation is complete, return this operation manual, warranty card, the remains of parts, and the package to

the customer.

Please confirm with the maintenance book that the manufacturer issued when installing and detaching genuine

parts of your vehicle.

If car navigation system or car television is installed in the vehicle, gauges and wires of this product need to be

kept as far away as possible from the wiring and installing locations of car navigation system or car television.

Failure to do so may result in interference of equipment.

In no event shall Nippon Seiki Co., Ltd. be liable to you for any damages or losses of genuine parts for your vehicle

while installing.


About Installation and Operation (for customer and installation personnel)


This product uses the 2.4GHz radio band communication. When devices which use the same radio band are near,

malfunction might occur. In the case that malfunction occurs, please stop using this product immediately.

In no event shall Nippon Seiki Co., Ltd. be liable to you for any damages arising out of the use or inability to use the

product, even if Nippon Seiki Co., Ltd. has been advised of the possibility of such damage.

Do not pull the wires out of connectors forcefully. The connectors may be broken and

the wires may be cut. When pulling out the wires, press the lock firmly and unclip the

locks of connectors.


The information displayed on the mobile device is for reference purposes only. Please drive according to the

indication of vehicle’s originally equipped instruments.

Please check the installed product regularly. Durability might deteriorate based on use and conditions, etc.

Detach this product from the vehicle when not in use for a long time.

Dispose of the product according to the local recycling regulations.

Do not disassemble or modify this product. Such actions will not only void the warranty but also damage or destroy the product.

In order to ensure safe driving, check the information on the gauge only for short periods of time. Looking at the

display for long periods of time could distract your attention from the road and create the risk of a traffic accident.

Discontinue use of this product if the adapter doesn’t operate, water gets into the adapter, or smoke or a strange

odor comes from the adapter. If such a condition occurs, contact the sales outlet or installation personnel as soon

as possible. Ignoring such conditions may lead to accidents or a fire.

Do not operate while driving.

Fix each part tightly to the vehicle to prevent children from swallowing parts.

In the case that you have a pacemaker or a defibrillator, do not use this product.

If such person may ride in your car, please detach this product and do not use the App.

In the case that warning alerts (ex. Check engine) appears on your vehicle s instrument cluster, or you notice any

abnormality, please detach the SMART ADAPTER W immediately and follow your vehicle s instruction manual.

When residual battery amount of your mobile device becomes small by using Defi Apps, if any emergency happens,

you might not be able to receive emergency alerts emails. Please ensure residual battery amount of your device for

emergencies during using Apps.

When you leave the vehicle behind, please do not leave your mobile device inside. In the case that you leave it on the

dashboard or elsewhere when interior temperature rises high, your mobile device might be overheating.

When using your mobile device, please follow the device manual. In the case that your device becomes overheating,

please stop using it immediately and turn it off.

■Power-supply voltage: 10V to 16V DC (12V vehicles only)

■Current consumption (the maximum current consumption value of SMART ADAPTER W obtained

when connecting OBDII) : 0.3A

■Current consumption (the maximum value obtained when connecting seven gauges):

B wire: 2A (IGN ON)


ILM wire: 800mA

■Temperature range (humidity is assumed to be 80% or lower) Unit: °C (°F)

Temperature range for storage

Temperature range for operation

-30(-22) 60(140)

-20(-4) 60(140)

■Weight(SMART ADAPTER W): 87g


Issue First edition: April, 2021 2nd edition: September, 2021

Manufacturer Nippon Seiki Co., Ltd.

Contact Information Defi, Nippon Seiki Co., Ltd.

[Address] 190-1 Fujihashi 1-chome, Nagaoka-shi, Niigata 940-2141 JAPAN
[URL] http://www.defi-shop.com/




※After turning the ignition on, it takes about 10 seconds for the active indicator to start blinking.

※Only one SMART ADAPTER W can be connected to one ADVANCE System.

※Up to 7 gauges, displays, and this adapter in total can be connected to one ADVANCE System.

※The adapter needs to be connected to the end of the meter line because the SMART ADAPTER W has only

one connector for the meter wire harness.


Control Unit

Sensor Wires


Power source

wire harness



Switch unit

Meter wire harness

Meter wire harness

Only one SMART ADAPTER W can be

connected. The adapter needs to be

connected to the end of the meter line.

86mm (3.4 )

76mm (3 )


(0.85 )

①Connect the adapter to the ADVANCE System by using the meter wire harness (optional meter wires

50cm/1m/2m can be also used). The adapter can be connected into either lines for meter output.

②Turn the ignition on and confirm the active indicator blinks every second waiting for connection.



waiting for pairing

blink every second



waiting for connection to paired device blink every 2 seconds
power off


Specifications, dimensions, and part names



③Active indicator (blue)

②Connector for cigar plug

①Connector for OBDII

④Connector for

 ADVANCE System Link

①Connector for OBDII

It receives OBDII data with the Adapter harness.

②Connector for Cigar plug

with Cigar plug wire harness

③Active indicator

④Connector for the ADVANCE System Link

needed when receiving data from ADVANCE System.

Adapter wire harness 80cm (2 3/5ft)

Cigar plug wire harness 1.5m (5ft)

In-vehicle Cigar socket


OBDII connector

OBDII wire harness 20cm (8 )

※Do not peel

the protective film

① Install the Defi Apps through App Store to your iOS device.
② Pairing your device with the Defi SMART ADAPTER W via Bluetooth. Refer to your iOS mobile User s Guide

about how to pair. When a 6-digit authentication code is required on the screen, please touch Pairing
ex.:『Settings』→『Bluetooth』→『Defi Smart Adapter』

③ Running the App. Selecting MENU button (on the screen) →『Communication』, driving data appears. Refer

to the Application User s Guide about other operations.

① Install the Defi Apps through Google Play to your Android device.
② Pairing your device with the Defi SMART ADAPTER W via Bluetooth. Pairing methods depend on mobile

devices models. Refer to your Android User s Guide. When a 6-digit authentication code is required on the
screen, please touch OK
ex.:『Settings』→『Set Up Bluetooth』→『Scanning』→『Defi Smart Adapter』

③ Running the App. Selecting MENU key (on your device) →『Communication』→『Defi Smart Adapter』,

driving data appears. Refer to the Application User s Guide about other operations.

① Follow the current device User s Guide, remove Bluetooth pairing on your device.
② After thirty seconds from ①, try to pair a new device you want to connect on its Bluetooth Setting.

When Connection Unsuccessful message appears on pairing, please wait for a few seconds untill

Connect message appears.

2. Device Settings

3. Confirmation

①  Fix the SMART ADAPTER W and its wires tightly where it does not interrupt driving by using the double

sided tape and tie-wraps. If you fail to fix them properly, it may cause unexpected accidents.
Install the SMART ADAPTER W and wires away from wet places. If an electrical short circuit happens, it
may cause damage not only to the adapter but also to your vehicle.

② Turning the ignition off, and confirm that the active indicator of the SMART ADAPTER W is turned off.

 Check the installation state periodically.
In the case that your OBDII has a cover, it may not be completely closed by attaching this product to
the OBDII connector.
When this product is connected to the in-vehicle OBDII connector, the top of the OBDII wire does not
fit to the OBDII body by 22mm.

Only one mobile device can be connected to the SMART ADAPTER W.

A. iOS Device

B. Android Device

C. Device Alteration

B. To OBDII Connector

①Connect the adapter to the ADVANCE System by using the meter wire harness

(optional meter wires 50cm/1m/2m can be also used). The adapter can be

connected into either lines for meter output.

②Connect the OBDII wire harness to the Adapter wire harness.
③Insert above ②wire harness into the in-vehicle OBDII connector and the SMART

ADAPTER W. Slide the yellow-lock part. Make sure that the connection is locked

④Turn the ignition on and confirm the active indicator blinks every second waiting for the pairing.

※Do not connect a cigar plug wire to the SMART ADAPTER W.
※After turning the ignition on, it takes about 10 seconds for the active indicator to start blinking.

C. Both to ADVANCE System and OBDII Connector

Adapter wire harness 80cm

Cigar plug wire harness 1.5m

In-vehicle cigar socket


OBDII connector

OBDII wire harness 20cm


The yellow-lock part






wire harness

Adapter wire harness 80cm


OBDII connector

OBDII wire harness 20cm


①Connect the OBDII wire harness to the Adapter wire harness.
②Insert above ①wire harness into the in-vehicle OBDII connector and the SMART

ADAPTER W. Slide the yellow-lock part. Make sure that the connection is locked

③Connect the Cigar plug wire harness to the SMART ADAPTER W and the

in-vehicle cigar socket.
※Make sure that there is nothing inside of an in-vehicle socket and insert the plug all the way.

④Turn the ignition on and confirm the active indicator blinks every second waiting for the pairing.

※After turning the ignition on, it takes about 10 seconds for the active indicator to start blinking.

The yellow-lock part







This kit contains SMART ADAPTER W (which can take ISO-CAN information via the

OBDII connector and transmit it to your iOS or Android device), and Dedicated OBDII

wire . This product does not function alone. You need an iOS or Android mobile

device. In the case of using Defi-Link ADVANCE Control Unit, information both from

ADVANCE Unit and OBDII can be simultaneously transmitted to your iOS or Android


※Refer to the Application User s Guide on the Defi web page regarding operations of the App.

※Please check both the adaptable car list and the adaptable device list on the Defi web page.




When you set up


Transmission gear position Setting

«, please do not your setup on public roads. It is better

to set up it on a closed course or a chassis dynamometer.

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions.

(1)This device may not cause harmful interference, and (2)This device must accept any interference

received, including interference that may cause undesired operation.

Caution:Changes or modifications not expressly approved by the party responsible for compliance could

void the user s authority to operate the equipment.

To users in the USA


Do not pull the wires out of connectors forcefully. The connectors may be broken and the wires

may be cut. When pulling out the wires, press the lock firmly and unclip the locks of connectors.

Do not install this product into the passenger side or center of the dashboard. It doesn’t

meet vehicle safety standards.

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the

following two conditions. (1)This device may not cause harmful interference, and (2)This device must

accept any interference, including interference that may cause undesired operation of the device.

To users in Canada

Parts name

QTY. DF14501 DF14502


1pc ○ ○

Double sided tape

1pc ○ ○

Meter wire harness 25cm (10in) 1pc ○ ○
Speed & Tachometer Signal Wire harness 2m (6 3/5ft)

1pc ○ ×

OBDII wire harness 20cm (8in) 1pc × ○
Adapter wire harness 80cm (2 3/5ft) 1pc × ○
Cigar plug wire harness 1.5m (5ft) 1pc × ○
Tie wrap

3pcs × ○


Operation manual (this sheet) and warranty card are included other than the parts listed above. Keep them at hand.


1. Installation of SMART ADAPTER W

A. To ADVANCE System




Maintenance, Check/Warranty & Servicing

■Warranty cardTerms and conditions

This product is delivered with this operation manual and a warranty card. Please read terms and conditions in this

manual thoroughly and keep the warranty card in a safe place. Failure to show this warranty will void the warranty.

■Warranty period

Limited one year warranty. The warranty period starts on the date of purchase. Please confirm the warranty has the

information about the retail store where you purchased the product. Please refer to Limited Warranty for details.


If you think there is a defect, please consult with the shop where you bought the product. We don’t accept the order

of fixing because Defi products require installation and wiring to the vehicle. In case you cannot go to the shop you

purchased because of move-out or closure of shop, please ask the nearest Defi Distributor listed in the Defi website.

For a repair/inspection service, take the warranty card and customer contact information with you.

Please conduct periodic inspections by Defi through a shop which sells Defi products or Defi’s official distributor

every five years. Inspection is available at an additional cost. In the case you purchase used products or used

vehicles with products of Defi, please have an inspection by Defi as well before using them.


The label stuck on the product is for tracing purposes. Do not peel it off.


When a repair is necessary, we will return the inspection result report through the store to you. After receiving a

repair service request, we’ll start the repair work. Ask the store how much it costs and how long it takes to repair.

■Discarding the products

Please dispose products in accordance with disposal laws, state laws and local government requirements. A recycle

label on the package indicates that the package is recyclable.

Except in the case of defects, we shall not be liable for any trouble including violation, accident or improper

wiring resulting from using this product.

The warranty does not cover any unauthorized repair performed or caused to be performed by the end user.

Such action can destroy or damage this product.

Terms and Conditions (for customer)

A. Limited Warranty

a. Our sole obligation to you after the sale of a product is to replace, without charge, the product or any

component thereof discovered to bee defective within a period of one (1) year from the purchasing

date (the «Warranty Period»). You accept sole responsibility for the proper assembly operation and

regular maintenance of the product. This limited warranty is void if any product is damaged by

accident, misuse, improper installation, or abuse, including tampering or damage in transit. Further,

this limited warranty is void if you sell or otherwise transfer a product to a third party, regardless of

whether the transfer takes place within the Warranty Period.

b. Out liability to you resulting from the sale of any product, including liability for any latent defects found

within the Warranty Period, shall not exceed the total purchase price paid for the product by you.






d. You also understand that we are not granting any express warranties, other than those stated herein.

These include only those warranties enumerated in paragraph A. a. There are no other express

warranties granted anywhere in these terms and conditions of sale, and you understand and agree to

this fact as part of the bargained for exchange of this sale. Nowhere else, except as stated in this

paragraph, in this contract is there intended, by either party, for there to be any express warranties

granted to you.







f. The warranty on this product is void if the product is modified, changed, adjusted or damaged. This

product is to be used only in the ways for which it is designed and marketed for, any deviations from

the intended uses will void the warranty and will excuse any possible liability of ours.

g. You accept sole responsibility for the proper assembly, operation and regular maintenance of the

product. This limited warranty is void if the product is damaged, changed, altered, or modified by

accident, misuse, improper installation , or abuse, including tampering or damage in transit or while in








h. This limited warranty gives you specific legal rights. You may also have other rights which vary from

state to state. Some states do not enforce contractual limitations on how long an implied warranty

lasts, when an action may be brought, or the exclusion or limitation of incidental or consequential

damages, so the above limitations or exclusions may not apply to you.

B. Modification Strictly Prohibited

You understand and agree that any modification whatsoever, of the product, is strictly prohibited. You

also agree not to modify the product in any manner regardless of whether such modification is

material or immaterial. You also acknowledge that any modification of the product will void your

limited warranty and bar you from any recovery or any remedy in a court of law or equity. Modification

is strictly forbidden unless expressly authorized by our prior written approval. You agree not to make

any modifications to the product and agree not to use any parts, components, or accessories in

connection with the installation and use of the product that are not authorized and approved by us.

C. Indemnity and Release

a. You understand and agree that many factors beyond our control affect the operational safety of the

Код ошибки:  obd2 scanner sorento на АлиЭкспресс — купить онлайн по выгодной цене

product, including but not to limited to the installation of the product according to the instructions

provided with the product.

b. You also understand and agree that the installation of the product may involve the use of tools,

equipment and construction methods which may present safety hazards which are beyond our

control. You also understand and agree that the use of some of our products may create hazards and

lower your ability to control your vehicle.

c. You agree, as part of the bargained for exchange, to protect, indemnify, save harmless and release

us, our authorized agents, employees, officers, directors and shareholders from and against all

liabilities, obligations, claims, damages, penalties, causes of action, costs and expenses, imposed

upon or incurred by or asserted against us or any assignees of ours, by you or any third party by

reason of the occurrence or existence (or alleged occurrence or existence) of any use, installation,

assembly, possession or operation of the product, any loss, damage or destruction of the product as

of and after delivery(a «casualty occurrence»), and any other act or event relating to or caused by the

product, including but not limited to, consequential or of the terms and conditions hereof, or any and

all liability for property loss or damage, or any and all damage resulting from death or personal

injuries, including loss of services which any person may sustain on account of, arising out of, or in

connection with any use, maintenance, possession or operation of the product. In the event that any

action, suit or proceeding is brought against us or any of our authorized agents, employees, officers,

directors or shareholders by reason of any such occurrence, you will, upon our request and at your

expense, resist and defend such action, suit or proceeding or cause the same to be resisted and

defended by counsel designated and approved by us.


Repair parts

Parts No.

Meter wire harness 25cm (10in) PDF07707H
Speed & Tachometer Signal Wire harness 2m (6 3/5ft)


OBDII wire harness 20cm (8in) PDF14503H
Adapter wire harness 80cm (2 3/5ft) PDF14502H
Cigar plug wire harness 1.5m (5ft) PDF12409H
Fuse 1A


※In the case of using Defi-Link ADVANCE Control Unit,


o not connect a cigar plug wire to the SMART ADAPTER W.




Режим диагностики real-time powertrain data.

В этом режиме на дисплей диагностического сканера выводятся текущие параметры блока управления. Эти параметры диагностики можно разделить на три группы. Первая группа — это статусы мониторов. Что такое монитор и зачем ему статус? В данном случае мониторами называются специальные подпрограммы блока управления, которые отвечают за выполнение весьма изощрённых диагностических тестов.

Существует два типа мониторов. Постоянные мониторы осуществляются блоком постоянно, сразу после пуска двигателя. Непостоянные активируются только при строго определённых условиях и режимах работы двигателя. Именно работа подпрограмм-мониторов во многом обуславливает мощные диагностические возможности контроллеров нового поколения. Если перефразировать известную поговорку, можно сказать так: “Диагност спит — мониторы работают”.

Правда, наличие тех или иных мониторов сильно зависит от конкретной модели автомобиля, то есть некоторые мониторы в данной модели могут отсутствовать. Теперь несколько слов о статусе. Статус монитора может принимать только один из четырёх вариантов — “завершен” или “незавершен”, “поддерживается”, “не поддерживается”.

Таким образом, статус монитора — это просто признак его состояния. Вот эти статусы и выводятся на дисплей сканера. Если в строках “статусы мониторов” высвечиваются символы “завершен”, и при этом коды неисправностей отсутствуют, можете не сомневаться, проблем нет.

Если же какой-либо из мониторов не завершён, нельзя с уверенностью говорить о том, что система функционирует нормально, необходимо либо отправляться на тест-драйв, либо попросить владельца автомобиля приехать ещё раз через какое-то время (более подробно об этом — см. режим $06).

Вторая группа — это PIDs, parameter identification data. Это основные параметры характеризующие работу датчиков, а также величины, характеризующие управляющие сигналы. Анализируя значения этих параметров, квалифицированный диагност может не только ускорить процесс поиска неисправности, но и прогнозировать появление тех или иных отклонений в работе системы.

  • Расход воздуха и/или Абсолютное давление во впускном коллекторе
  • Относительное положение дроссельной заслонки
  • Скорость автомобиля
  • Напряжение датчика (датчиков) кислорода до катализатора
  • Напряжение датчика (датчиков) кислорода после катализатора
  • Показатель (показатели) топливной коррекции
  • Показатель (показатели) топливной адаптации
  • Статус (статусы) контура (контуров) лямбда-регулирования
  • Угол опережения зажигания
  • Значение рассчитанной нагрузки
  • Охлаждающая жидкость и ее температура
  • Высасываемый воздух (температура)
  • Частота вращения коленчатого вала

Если сравнить этот список с тем, что можно «вытащить» из того же самого блока, обратившись к нему на его родном языке, то есть по заводскому (ОЕМ) протоколу, выглядит он не очень впечатляюще. Малое количество «живых» параметров — один из минусов стандарта OBD II.

Однако в подавляющем большинстве случаев этого минимума вполне достаточно. Есть ещё одна тонкость: выводимые параметры уже интерпретированы блоком управления (исключением являются сигналы датчиков кислорода), то есть в списке нет параметров, характеризующих физические величины сигналов.

Нет параметров, отображающих значения напряжения на выходе датчика расхода воздуха, напряжения борт-сети, напряжения с датчика положения дроссельной заслонки и т.п. — выводятся только интерпретированные значения (см. список выше). С одной стороны, это не всегда удобно.

С другой — работа по «заводским» протоколам часто также вызывает разочарование именно потому, что производители увлекаются выводом физических величин, забывая про такие важные параметры, как массовый расход воздуха, расчётная нагрузка и т.п. Показатели топливной коррекции/адаптации (если вообще выводятся) в заводских протоколах часто представлены в очень неудобной и малоинформативной форме.

Во всех этих случаях использование протокола OBD II позволяет получить дополнительные преимущества. При одновременном выводе четырёх параметров частота обновления каждого параметра составит 2,5 раза в секунду, что вполне адекватно регистрируется нашим зрением.

К особенностям OBD II -протоколов относится также сравнительно медленная передача данных. Наибольшая скорость обновления информации, доступная для этого протокола — не более десяти раз в секунду. Поэтому не стоит выводить на дисплей большое количество параметров.

Примерно такая же частота обновления характерна для многих заводских протоколов 90-х годов. Если количество одновременно выводимых параметров увеличить до десяти, эта величина составит всего один раз в секунду, что во многих случаях просто не позволяет нормально анализировать работу системы.

Третья группа — это всего один параметр, к тому же не цифровой, а параметр состояния. Имеется в виду информация о текущей команде блока на включение лампы Check Engine (включена или выключена). Очевидно, что и в США есть «специалисты» по подключению этой лампы параллельно аварийной лампочке давления масла.

По крайней мере, такие факты уже были известны разработчикам OBD-II. Напомним, что лампа Check Engine загорается при обнаружении блоком отклонений или неисправностей, приводящих к увеличению вредных выбросов более чем в 1,5 раза по сравнению с допустимыми на момент выпуска данного автомобиля.

Автомобили «Mazda», как и автомобили «Subaru» в ремонт стараются не брать…

И этому есть много причин, начиная от того, что информации, справочного материала по этим машинам очень мало и заканчивая тем, что эта машина,по мнению многих просто «непредсказуемая».

И что бы развеять этот миф о «непредсказуемости» автомобиля «Mazda» и о сложности его ремонта было и решено написать «несколько строк» о ремонте данной модели машин на примере «Mazda» с двигателем JE объемом 2.997 см3.

Такие двигателя ставятся на машинах «представительского» класса, обычно на моделях с ласковым названием «Люси». Двигатель — «шестерка», «V-образный», с двумя распределительными валами. Для проведения самодиагностики в моторном отсеке есть диагностический разъем, о котором мало кто знает и тем более — пользуется. Диагностические разъемы бывают двух видов :

— диагностический разъем «старого образца», используемый на моделях «MAZDA» выпуска до 1993 года (топливный фильтр, показанный на рисунке, может располагаться в другом месте, например, в районе переднего левого колеса, что характерно для моделей машин выпускаемых для внутреннего рынка Японии.

-диагностический разъем «нового образца»,используемый на моделях выпуска после 1993 года :

Кодов самодиагностики для автомобилей «Mazda» существует множество, практически для каждой модели есть какой-то «свой» код неисправности и привести их все мы просто не в состоянии, однако приведем основные коды для моделей с двигателем «JE» выпуска 1990 года и диагностическим разъемом (коннектором) зеленого цвета.

Итак, что бы считать код неисправности (если он имеется), надо проделать следующие процедуры :

  1. снять «минусовую» клемму с аккумулятора на 20-40 секунд
  2. нажать на педаль тормоза в течении 5 секунд
  3. подсоеденить обратно «минусовую» клемму
  4. соеденить зеленый тестовый разъем (одноконтактный) с «минусом»
  5. Включить зажигание, но двигатель не заводить в течении 6 секунд
  6. Завести двигатель,довести его обороты до 2.000 и удерживать их на этом уровне в течении 2 минут
  7. Лампочка на панели приборов должна «замигать»,указывая на код неисправности:
Код неисправности (количество вспышек лампочки

Описание неисправности

1Неисправностей в системе не обнаружено, лампочка мигает с одной и той же частотой
2Отсутствие сигнала зажигания (Ne), проблема может заключаться в отсутствии питания на коммутатор,распределитель зажигания,катушку зажигания,увеличенном зазоре в распределителе зажигания,обрыве в катушке
3Отсутствие сигнала G1 от распределителя зажигания
4Отсутствие сигнала G2 от распределителя зажигания
5Датчик детонации — отсутствует сигнал
8Проблемы с MAF-sensor ( air flow meter ) — нет сигнала
9Датчик температуры охлаждающей жидкости ( THW ) — проверить : на разъеме датчика (в сторону блока управления) — питание ( 4.9 — 5.0 вольт), наличие «минуса», сопротивление датчика в «холодном» состоянии ( от 2 до 8 Ком в зависимости от температуры «за бортом», в «горячем» состоянии от 250 до 300 Ом
10Датчик температуры входящего воздуха (расположен в корпусе MAF-sensor)
11То же самое
12Датчик положения дроссельной заслонки ( TPS ).Проверить наличие «питания», «минуса»
15Левый датчик кислорода ( «02», «Oxygen Sensor»)
16Датчик системы EGR — сигнал датчика (сенсора) не соответствует заданному значению
17Cистема «обратной связи» с левой стороны , сигнал датчика кислорода в течении 1 минуты не превышает значения в 0.55 вольт при оборотах двигателя 1.500 : не работает система обратной связи с блоком управления, в этом случае блок управления никак не корректирует состав топливной смеси и объем топливной смеси в цилиндры подается «по умолчанию», то есть «среднее значение».
23Датчик кислорода с правой стороны : сигнал датчика в течении 2 минут ниже 0.55 вольт при работе двигателя на оборотах 1.500
24Система обратной связи с правой стороны, сигнал датчика кислорода в течении 1 минуты не меняет своего значения в 0.55 вольт при оборотах двигателя 1.500 : не работает система обратной связи с блоком управления, в этом случае блок управления никак не корректирует состав топливной смеси и объем топливной смеси подается в цилиндры «по умолчанию», то есть «среднее значение».
25Неисправность электромагнитного клапана регулятора давления топливной системы ( на данном двигателе расположен на правой клапанной крышке двигателя,рядом с «обратным» клапаном)
26Неисправность электромагнитного клапана системы очистки EGR
28Неисправность электромагнитного клапана системы EGR : нештатное значение величины разряжения в системе
29Неисправность электромагнитного клапана системы EGR
34Неисправность клапана ISC ( Idle speed control ) — клапана регулировки холостого хода
36Неисправность реле, отвечающего за нагрев датчика кислорода
41Неисправность электромагнитного клапана, отвечающего за изменениями величины «наддува» в системе EGR при различных режимах работы

«Стирание» кодов неисправностей производится по следующей схеме :

  1. Отсоеденить «минус» от АКБ
  2. Нажать на педаль тормоза в течении 5 секунд
  3. Подсоеденить «минус» к АКБ
  4. Соеденить зеленый тестовый разъем с «минусом»
  5. Завести двигатель и удерживать обороты 2.000 в течении 2 минут
  6. После этого убедиться, что лампочка самодиагностики не высвечивает коды неисправностей.

…а теперь непосредственно о той машине, на примере которой мы и расскажем «как и что надо и не надо делать» на «непредсказуемой» машине.

Итак, — «Mazda», выпуска 1992 года, класс «представительский», двигатель «JE».На Сахалине эта машина «бегала» уже более трех лет и все в «одних руках». Надо сказать, что в «хороших руках», потому что была ухожена,блестела как новенькая. Месяцев шесть назад мы уже «встречались» — клиент приезжал к нам на диагностику системы ABS.

После проведенного ремонта ходовой части на правом переднем колесе у него загоралась лампочка ABS на панели приборов при достижении скорости более 10 кмчас.И во всех мастерских, где наш клиент уже успел побывать, все были уверены в том, что неисправнен именно датчик скорости на этом колесе, потому что при вывешивании колеса и его прокручивании загоралась лампочка ABS.

Если «зашориться» на правом датчике и более ничего не видеть и не думать, то проблема действительно «неразрешимая». Проблема была в другом датчике — в левом. Просто на этих моделях немного другое исполнение системы управления ABS, немного другой алгоритм работы блока управления.

Но это к слову и к тому, почему на этот раз клиент приехал именно к нам — понимаете почему?

Вот-вот, просто думать надо и руки не опускать.

А что на этот раз ?

На этот раз дела обстояли гораздо сложнее и неприятнее :

  • на холостом ходу двигатель работал неровно, то 900 оборотов «держит», а то вдруг самостоятельно их повышает до 1.300, а еще через какое-то время может «сбросить» их до минимума, почти до 500 и уже «стремится» заглохнуть.
  • Если «послушать» работу двигателя, то создается такое впечатление, что не работает какой-то из цилиндров, но как-то неявственно, не определенно выражено. Можно даже и так сказать : «то — ли работает, то — ли не работает, непонятно,одним словом !».
  • При работе на ХХ машину всю «колотит», как в «трясучке», хотя определенно сказать, что не работает какой-то из цилиндров — нельзя.
  • При нажатии на педаль газа двигатель некоторое время еще думает — «набирать ему обороты или нет?», но потом «соглашается» и словно в одолжение начинает потихоньку «поднимать» стрелку тахометра.Однако , что бы стрелке «добраться» до красной зоны надо ждать долго…
  • Если же на педаль газа нажать резко, «топнуть» на нее, то двигатель может и заглохнуть.
  • При пережимании «обратки» обороты ХХ нормализуются (вроде бы), но при нажатии на педаль газа, двигатель обороты набирает так же «вяло».

Вот сколько «всякого и разного». И куда здесь «тыкаться» для первого раза — тоже непонятно. Но для начала проверили : «что там „говорит“ система самодиагностики»?

Ничего она не говорила. «Все нормально, хозяин!», — мигала лампочка на панели приборов.

Решили проверить давление в топливной системе. На этой модели нам пришлось «включать» топливный насос непосредственно «через» багажник (там находится разъем топливного насоса на этой модели),но на более «продвинутых» машинах с «новым» диагностическим разъемом это можно сделать и по-другому, как показано на рисунке:

Буквами «FP» обозначены контакты топливного насоса ( Fuel Pump ), при замыкании которых с «минусом» ( GND или «Ground») насос должен начать работать.

Давление в топливной системе весьма желательно проверять манометром со шкалой до 6 килограмм на см2. В этом случае будет хорошо видны любые колебания в системе.

Проверяем в трех точках:

  1. До топливного фильтра
  2. После топливного фильтра
  3. После «обратного» клапана

Тем самым мы сможем по показаниям манометра определить, например, «забитость» топливного фильтра : если до фильтра давление будет,например, 2.5 кгсм2, а после него — 1 килограмм, то можно определенно и уверенно сказать, что фильтр «забит» и его надо менять.

Замерив давление топлива после «обратного» клапана мы получим «истинное» давление в топливной системе и оно должно быть не менее 2.6 кгсм2. Если же давление менее указанного, то это может говорить о проблемах в топливной системе, которые можно указать по пунктам:

  • Топливный насос изношен в результате естественного износа(его наработка составляет много-много лет…) или в результате работы с некачественным топливом (присутствие воды,частиц грязи и так далее), что повлияло на износ коллектора и щеток коллектора,подшипника. Такой насос уже не может создавать необходимое начальное давление в 2.5 — 3.0 кгсм2. При «прослушивании» такого насоса можно услышать посторонний «механический» звук.
  • Топливопровод от топливного насоса до топливного фильтра изменил свое сечение (подмят) в результате неосторожной езды, особенно по зимним дорогам.
  • Топливный фильтр «забит» в результате работы на некачественном топливе, в результате заправки зимой топливом с частицами воды или если он долгое время не подвергался замене в течении 20 — 30 тысяч километров. Особенно часто выходит из строя топливный фильтр изготовленный где-то «слева»,например, в Китае,Сингапуре, потому что тамошние дельцы всегда экономят на технологии производства,особенно на фильтрующей бумаге,стоимость которой составляет 30 — 60% от стоимости всего фильтра.
  • Неисправность «обратного клапана». Возникает часто после долгой стоянки автомобиля, особенно если он был заправлен некачественным топливом с присутствием воды : клапан внутри «закисает» и «реанимировать» его удается не всегда, но бывает, что помогает очищающая жидкость типа WD-40 и энергичная продувка компрессором. Кстати, если есть сомнения в работе данного клапана, то его можно проверить при помощи компрессора имеющего свой манометр : открытие клапана должно происходить при давлении около 2.5 кгсм2, а закрытие — около 2 кгсм2. Косвенно определить неисправность «обратного клапана» можно по состоянию свечей зажигания — они имеют сухой и черный бархатистый налет, который создается из-за избытка топлива. Объяснить этот факт можно следующим (посмотрим на рисунок) :

Идем далее и начинаем проверять датчик положения дроссельной заслонки

( TPS). Что там должно быть? Правильно :

  • «питание» 5 вольт ( контакт D )
  • «выход» сигнала для блока управления ( контакт «С»)
  • «минус» (контакт «А» )
  • контакт холостого хода («B» )

И, как всегда бывает в Жизни, самое основное проверялось в самую последнюю очередь — подключаем стробоскоп и проверяем метку, как она и что:

И оказывается, что метки практически не видно. Нет, сама-то она есть, но находится не там, где ей следовало бы.

Разбираем все то, что мешает добраться к «лобовине» двигателя и ремню ГРМ и начинаем проверять метки на шкивах распредвалов и коленвала :

На рисунке хорошо видно расположение меток.

Но это — «так быть должно!», а у нас метки просто-напросто «разбежались»…

……..в принципе, это и было основной причиной вот такой «непонятной» работы двигателя. И просто удивительно, что при «разбеге» меток как на одном, так и на втором шкивах распределительных валов двигатель еще и работал !

При всем многообразии абсолютное большинство автомобильных микропроцессорных систем управления построено по единому принципу. Архитектурно этот принцип таков: датчики состояния — командный компьютер — исполнительные механизмы изменения (состояния).

Главенствующая роль в таких системах управления (двигателем, АКПП и др.) принадлежит ECU, недаром народное название ECU как командного компьютера — <мозги>. Не каждый блок управления компьютер, изредка пока еще встречаются ECU, не содержащие микропроцессора.

По набору функций ECU подобны друг другу настолько, насколько подобны друг другу соответствующие системы управления. Фактические отличия могут быть весьма велики, но вопросы электропитания, взаимодействия с реле и прочими соленоидными нагрузками идентичны для самых разных ECU.

В разделах <Проверка функций:> в рамках предлагаемой логики подробно рассмотрена диагностика системы управления двигателем в ситуации, когда стартер работает, а двигатель не заводится. Этот случай выбран с целью, показать полную последовательность проверок при отказе системы управления бензиновым двигателем.

Исправен ли ECU? Не торопитесь…

Разнообразие систем управления обязано своим появлением на свет частой модернизации а/м агрегатов их производителями. Так, например, каждый двигатель производится в течение ряда лет, но его система управления модифицируется почти ежегодно, и исходная со временем может быть полностью заменена на совершенно другую.

Соответственно, в разные годы один и тот же двигатель может комплектоваться в зависимости от состава системы управления разными, похожими или не похожими друг на друга блоками управления. Пусть механика такого двигателя хорошо известна, но часто оказывается, что как раз видоизмененная система управления приводит к затруднениям в локализации внешне знакомой неисправности. Казалось бы, в такой ситуации важно определить: а исправен ли новый, не знакомый ECU?

На самом деле гораздо важнее преодолеть соблазн задумываться на эту тему. Слишком просто усомниться в исправности экземпляра ECU, ведь собственно про него, даже как о представителе известной системы управления, обычно мало что известно. С другой стороны, существуют несложные приемы диагностики, применимые в силу своей простоты одинаково успешно к самым различным системам управления. Такая универсальность объясняется тем, что указанные приемы опираются на родство систем и тестируют их общие функции.

Данная проверка инструментально доступна любому гаражу, и игнорировать ее, ссылаясь на применение сканера, неоправданно. Наоборот, оправданна перепроверка результатов сканирования ECU. Ведь то, что сканер весьма облегчает диагностику — распространенное заблуждение.

Точнее было бы сказать, что — да, облегчает поиск одних, но никак не помогает в выявлении других и затрудняет поиск третьих неисправностей. На самом деле диагност способен обнаружить при помощи сканера 40…60 % неисправностей (см. рекламные материалы по диагностическому оборудованию), т.е. этот прибор как-то отслеживает, примерно, их половину.

До 20% из поступающих на диагностику ECU оказываются исправными, и большинство таких обращений — результат скоропалительного вывода о выходе ECU из строя. Не будет большим преувеличением сказать, что за каждым абзацем далее стоит случай разбирательства с тем или иным а/м после установления исправности его ECU, который первоначально был сдан в ремонт как предположительно дефектный.

Универсальный алгоритм.

Излагаемый способ диагностики использует принцип <презумпции невиновности ECU>. Другими словами, если нет прямых доказательств выхода ECU из строя, то следует предпринять поиск причины неполадки в системе в предположении исправности ECU. Прямых доказательств дефектности блока управления существует всего два.

Либо ECU имеет видимые повреждения, либо проблема уходит при замене ECU на заведомо исправный (ну, либо переносится на заведомо исправный а/м вместе с подозрительным блоком; иногда это делать небезопасно, к тому же здесь встречается исключение, когда блок управления поврежден так, что не способен работать во всем диапазоне эксплуатационного разброса параметров разных экземпляров одной и той же системы управления, но на одном из двух а/м все-таки работает).

Диагностика должна развиваться в направлении от простого к сложному и в согласии с логикой работы системы управления. Именно поэтому предположение о дефекте ECU следует оставить <на потом>. Сначала рассматриваются общие соображения здравого смысла, затем последовательной проверке подлежат функции системы управления.

Эти функции четко разделяются на обеспечивающие работу ECU и на функции, исполняемые ECU. Сначала должны проверяться функции обеспечения, затем — функции исполнения. В этом главное отличие последовательной проверки от произвольной: она выполняется по приоритетеу функций.

Диагностика успешна только тогда, когда указывает на важнейшую из утраченных или нарушенных функций, а не на произвольный набор таковых. Это существенный момент, т.к. потеря одной функции обеспечения может приводить к невозможности работы нескольких функций исполнения.

При непоследовательном поиске наведенные неисправности маскируют истинную причину проблемы (весьма характерно для диагностики сканером). Понятно, что попытки бороться с наведенными неисправностями <в лоб> ни к чему не приводят, повторное сканирование ECU дает прежний результат. Ну а ECU <есть предмет темный и научному исследованию не подлежит>, да и заменить его для пробы, как правило, нечем — вот схематичные наброски процесса ошибочной выбраковки ECU.

Итак, универсальный алгоритм поиска неисправности в системе управления таков:

визуальный осмотр, проверка простейших соображений здравого смысла;

сканирование ECU, чтение кодов неисправностей (по возможности);

осмотр ECU или проверка путем замены (по возможности);

проверка функций обеспечения работы ECU;

проверка функций исполнения ECU.

С чего начать?

Важная роль принадлежит подробному опросу владельца о том, какие внешние проявления неисправности он наблюдал, как возникла или развивалась проблема, какие действия в этой связи уже были предприняты. Если проблема в системе управления двигателем, следует уделить внимание вопросам про сигнализацию (противоугонную систему), т.к электрика дополнительных устройств заведомо менее надежна из-за упрощенных приемов их установки (например, пайка или стандартные соединители в назначаемых точках ветвления и рассечения штатной проводки при подключении дополнительного жгута, как правило, не применяются; причем пайка зачастую не применяется сознательно из-за якобы ее неустойчивости перед вибрацией, что для качественной пайки, конечно, не так).

Кроме того, необходимо точно установить, какой именно а/м перед вами. Устранение сколько-нибудь серьезной неисправности в системе управления предполагает использование электрической схемы последней. Электросхемы сведены в специальные автомобильные компьютерные базы по диагностике и ныне весьма доступны, надо лишь правильно выбрать нужную.

Обычно, если задать самую общую информацию по а/м (отметим, что базы по электросхемам не оперируют VIN-номерами), поисковик базы найдет несколько разновидностей модели а/м, и потребуется дополнительная информация, которую может сообщить владелец. Например, название двигателя всегда записано в техпаспорте — буквы перед номером двигателя.

Осмотр и соображения здравого смысла.

Визуальный осмотр играет роль простейшего средства. Это совсем не означает простоту проблемы, причина которой, возможно, будет найдена таким способом.

В процессе предварительного осмотра должно проверяться:

наличие топлива в бензобаке (если подозрение на систему управления двигателем);

отсутствие затычки в выхлопной трубе (если подозрение на систему управления двигателем);

затянуты ли клеммы аккумуляторной батареи (АКБ) и их состояние;

отсутствие видимого повреждения электропроводки;

хорошо ли вставлены (должны быть защелкнуты и не перепутаны) разъемы проводки системы управления;

предыдущие чужие действия по преодолению проблемы;

подлинность ключа зажигания — для а/м со штатным иммобилайзером (если подозрение на систему управления двигателем);

Иногда бывает полезно осмотреть место установки ECU. Не так уж редко оно оказывается залито водой, например, после мойки двигателя установкой высокого давления. Вода губительна для ECU негерметичного исполнения. Заметим, что разъемы ECU также бывают как герметичного, так и простого исполнения. Разъем должен быть сухим (допустимо применять в качестве водоотталкивающего средства, например, WD-40).

Чтение кодов неисправностей.

Если для чтения кодов неисправностей применяется сканер или компьютер с адаптером, важно, чтобы их соединение с цифровой шиной ECU было правильно выполнено. Ранние ECU не устанавливают связь с диагностикой, пока не подсоединены обе линии K и L.

Сканирование ECU, либо активация самодиагностики а/м позволят быстро определить несложные проблемы, например, из числа обнаружения неисправных датчиков. Особенностью здесь является то, что для ECU, как правило, все равно: неисправен сам датчик или его проводка.

При обнаружении неисправных датчиков встречаются исключения. Так, например, дилерский прибор DIAG-2000 (французские а/м) в целом ряде случаев не отслеживает обрыва по цепи датчика положения коленвала при проверке системы управления двигателем (в отсутствие пуска именно по причине указанного обрыва).

Исполнительные механизмы (например, реле, управляемые ECU) проверяются сканером в режиме принудительного включения нагрузок (тест исполнительных механизмов). Здесь опять-таки важно отличать дефект в нагрузке от дефекта в ее проводке.

По-настоящему должна настораживать ситуация, когда наблюдается сканирование множественных кодов неисправностей. При этом весьма велика вероятность того, что часть из них относится к наведенным неисправностям. Такое указание на неисправность ECU, как <нет связи>, — означает, скорее всего, что ECU обесточен или отсутствует какое-нибудь одно его питание или заземление.

Если вы не располагаете сканером или его эквивалентом в виде компьютера с адаптером линий K и L, большую часть проверок можно сделать вручную (см. разделы <Проверка функций:>). Конечно, это будет медленнее, но при последовательном поиске и объем работы может быть невелик.

Недорогое диагностическое оборудование и программы можно приобрести здесь.

Осмотр и проверка ECU.

В тех случаях, когда доступ к ECU прост, а сам блок может быть легко вскрыт, следует осмотреть его. Вот что может наблюдаться в неисправном ECU:

обрывы, отслоение токоведущих дорожек, часто с характерными подпалинами;

вспученные или треснувшие электронные компоненты;

прогары печатной платы вплоть до сквозных;


окислы белого, сине-зеленого или коричневого цвета;

Как уже было сказано, достоверно проверить ECU можно путем замены на заведомо исправный. Очень хорошо, если диагност располагает проверочным ECU. Однако следует считаться с риском вывести этот блок из строя, ведь часто первопричина проблемы — неисправность внешних цепей.

Поэтому необходимость иметь проверочные ECU не очевидна, а сам прием следует применять с большой осмотрительностью. На практике гораздо продуктивнее в начальной фазе поиска считать ECU исправным уже только потому, что его осмотр не убеждает в обратном. Бывает невредно просто убедиться, что ECU на месте.

Проверка функций обеспечения.

К функциям обеспечения работы ECU системы управления двигателем относятся:

питание ECU как электронного устройства;

обмен с управляющим блоком иммобилайзера — если имеется штатный иммобилайзер;

запуск и синхронизация ECU от датчиков положения коленвала и/или распредвала;

информация с прочих датчиков.

Проверьте отсутствие сгоревших предохранителей.

Проверьте состояние АКБ. Степень заряженности исправной батареи с достаточной для практики точностью может быть оценена по напряжению U на ее клеммах при помощи формулы (U-11.8)*100% ( пределы применимости — напряжение АКБ без нагрузки U=12.8:12.2V).

Глубокий разряд АКБ со сниженим ее напряжения без нагрузки до уровня менее 10V не допускается, иначе происходит необратимая потеря емкости батареи. В режиме работы стартера напряжение АКБ не должно падать менее 9V, иначе фактическая емкость батареи не соответствует нагрузке.

Проверьте отсутствие сопротивления между минусовой клеммой АКБ и массой кузова; и массой двигателя.

Затруднения в проверке питания обычно происходят тогда, когда ее пытаются провести, не имея схемы включения ECU в проводку. За редким исключением на разъеме жгута ECU (блок на время проведения проверки следует отсоединить) присутствует несколько напряжений 12V при включенном зажигании и несколько точек заземления.

Питания ECU это соединение с <плюсом> АКБ (<30>) и соединение с замком зажигания (<15>). <Дополнительное> питание может поступать с главного реле (Main Relay) . При замерах напряжения на отключенном от ECU соединителе важно задать небольшую токовую нагрузку проверяемой цепи, подключив параллельно щупам измерителя, например, маломощную контрольную лампу.

В том случае, если главное реле должно включаться самим ECU, следует подать потенциал <массы> на контакт разъема жгута ECU, соответствующий концу обмотки указанного реле, и наблюдать появление дополнительного питания. Делать это удобно с помощью джампера — длинного куска провода с миниатюрными зажимами-крокодилами (в одном из которых следует зажать булавку).

Джампер, кроме того, применяют для пробного обхода подозрительного провода путем параллельного включения, а также для удлинения одного из щупов мультиметра, что позволяет держать в освободившейся руке прибор, свободно перемещаясь с ним по точкам проведения измерений.

Код ошибки:  Стабилизатор тока на lm317 для светодиодов - LED Свет

джампер и его реализация

Должны быть целыми провода соединения ECU с <массой>, т.е. заземления (<31>). Недостоверно устанавливать их целостность <на слух> прозвонкой мультиметром, т.к. такая проверка не отслеживает сопротивлений порядка десятков Ом, следует обязательно считывать показания с индикатора прибора.

Еще лучше пользоваться контрольной лампой, включая ее относительно <30> (неполный накал свечения укажет на неисправность). Дело в том, что целостность провода при микротоках <прозвонки> мультиметром может исчезать при токовой нагрузке близкой к реальной (характерно для внутренних обломов или сильной коррозии проводников).

контрольная лампа, контрольная лампа с источником питания и их реализация в виде щупа.

Пример системы управления, критичной к качеству питания — Nissan ECCS, особенно у модели Maxima 95 года и выше. Так плохой контакт двигателя с <массой> здесь приводит к тому, что ECU перестает управлять зажиганием по нескольким цилиндрам, и создается иллюзия неисправности соответствующих каналов управления.

Эта иллюзия особенно сильна, если двигатель имеет небольшой объем и заводится на двух цилиндрах (Primera). На поверку дело может также оказаться в незачищенной клемме <30> АКБ или в том, что батарея разряжена. Стартуя при пониженном напряжении на двух цилиндрах, двигатель не достигает нормальных оборотов х.х., поэтому генератор не может увеличить напряжение в бортовой сети.

В результате ECU продолжает управлять лишь двумя катушками зажигания из четырех, как будто неисправен. Характерно, что если попытаться завести такую машину <с толкача>, она заведется нормально. Описанную особенность приходилось наблюдать даже у системы управления 2002 года выпуска.

Если а/м оснащен штатным иммобилайзером, запуску двигателя предшествует авторизация ключа зажигания. В процессе ее должен произойти обмен импульсными посылками между ECU двигателя и ECU иммобилайзера (обычно — по включению зажигания). Об успешности этого обмена судят по секъюрити-индикатору, например, на приборной панели (должен погаснуть).

Для транспондерного иммобилайзера наиболее распространенные проблемы это плохой контакт в месте подсоединения кольцевой антенны и изготовление владельцем механического дубликата ключа, не содержащего идентификационной метки. При отсутствии индикатора иммобилайзера обмен можно наблюдать осциллографом на выводе Data Link разъема диагностики (или на выводе K- , либо W-линии ECU — зависит от межблочных соединений). В первом приближении важно, чтобы хоть какой-то обмен наблюдался, подробнее см. здесь.

Управление впрыском и зажиганием требует запуска ECU как генератора импульсов управления, а также — синхронизации этой генерации с механикой двигателя. Запуск и синхронизацию обеспечивают сигналы с датчиков положения коленвала и/или распредвала (далее для краткости будем называть их датчиками вращения).

Амплитуда импульсов указанных датчиков может быть измерена осциллографом, правильность фаз обычно проверяется по меткам установки ремня (цепи) газораспределительного механизма (ГРМ). Датчики вращения индуктивного типа проверяются путем замера их сопротивления (обычно от 0.2 КОм до 0.

Заметим, что иногда путают два типа датчиков, называя индуктивный датчик датчиком Холла. Это, конечно, не одно и то же: основу индуктивного составляет многовитковая проволочная катушка, тогда как основа датчика Холла — магнитоуправляемая микросхема. Соответственно отличаются явления, используемые в работе этих датчиков.

В первом — электромагнитная индукция (в проводящем контуре, находящемся в переменном магнитном поле, возникает э.д.с., а если контур замкнут — электрический ток). Во втором — эффект Холла (в проводнике с током — в данном случае в полупроводнике, — помещенном в магнитное поле, возникает электрическое поле, перпендикулярное направлению и тока, и магнитного поля; эффект сопровождается возникновением разности потенциалов в образце).

Встречаются модифицированные индуктивные датчики, содержащие кроме катушки и ее сердечника еще и микросхему-формирователь с целью получения на выходе сигнала, уже пригодного для цифровой части схемы ECU (например, датчик положения коленвала в системе управления Simos/VW).

Обратите внимание: модифицированные индуктивные датчики часто неправильно изображаются на электросхемах как катушка с третьим экранирующим проводом. На самом деле экранирующий провод образует с одним из неправильно указанных на схеме как конец обмотки проводом цепь питания микросхемы датчика, а оставшийся провод — сигнальный (67 вывод ECU Simos).

Условное обозначение как у датчика Холла может быть принято, т.к. достаточно для понимания главного отличия: модифицированный индуктивный датчик в отличие от просто индуктивного требует подачи питания и имеет на выходе прямоугольные импульсы, а не синусоиду (строго говоря, сигнал несколько сложнее, но в данном случае это неважно).

Прочие датчики выполняют вторичную роль по сравнению с датчиками вращения, поэтому здесь скажем лишь, что в первом приближении проверить их исправность можно путем отслеживания изменения напряжения на сигнальном проводе вслед за изменением того параметра, который измеряет датчик.

Следует помнить, что датчики, содержащие электронные компоненты, могут работать только при поданном на них напряжении питания (подробнее см. ниже).

Проверка функций исполнения. Часть 1.

К функциям исполнения ECU системы управления двигателем относятся:

управление главным реле;

управление реле бензонасоса;

управление опорными (питающими) напряжениями датчиков;

управление зажиганием;

управление форсунками;

управление побудителем (регулятором) холостого хода — idle actuator, иногда это просто клапан;

управление дополнительными реле;

управление дополнительными устройствами;


Наличие управления главным реле может быть определено по следствию: путем замера напряжения на том выводе ECU, на который оно подается с выхода <87> этого реле (считаем, что проверка работы реле как обеспечивающей функции уже проведена, т.е. исправность самого реле и его проводки установлена, см. выше).

Указанное напряжение должно появиться после включения зажигания <15>. Другой способ проверки — лампа взамен реле — маломощной контрольной лампой (не более 5W), включаемой между <30> и управляющим выводом ECU (соответствует <85> главного реле ). Важно: лампа должна гореть полным накалом после включения зажигания.

Проверка управления реле бензонасоса должна учитывать логику работы бензонасоса в исследуемой системе, а также способ включения реле. В некоторых а/м питание обмотки этого реле берется с контакта главного реле. На практике часто проверяют весь канал ECU-реле-бензонасос по характерному жужжащему звуку предварительной подкачки топлива в течение Т=1:3 секунд после включения зажигания.

Однако, такая подкачка есть не у всех а/м, что объясняется подходом разработчика: считается, что отсутствие подкачки благотворно влияет на механику двигателя при старте в связи с опережающим началом работы масляного насоса. В таком случае можно пользоваться контрольной лампой (мощностью до 5W), как это было описано в проверке управления главным реле (с поправкой на логику работы бензонасоса).

Дело в том, что в ECU может содержаться <на одном выводе> до трех функций управления реле бензонасоса. Кроме предварительной подкачки, может быть функция включения бензонасоса по сигналу включения стартера (<50>), а также — по сигналу датчиков вращения.

Соответственно, каждая из трех функций зависит от своего обеспечения, что, собственно, и заставляет их различать. Встречаются системы управления (например, некоторые разновидности TCCS/Toyota), в которых включением бензонасоса управляет концевой выключатель расходомера воздуха, а управление одноименным реле от ECU отсутствует.

Заметим, что разрыв цепи управления реле бензонасоса — распространенный способ блокировки в противоугонных целях. Он рекомендуется к использованию в инструкциях множества охранных систем. Поэтому при отказе работы указанного реле следует проверить, не заблокирована ли цепь управления им?

В некоторых марках а/м (например, Ford, Honda) в целях безопасности применяется штатный автоматический размыкатель проводки, срабатывающий на удар (в Ford размещается в багажнике и поэтому реагирует также и на <выстрелы> в глушителе). Для восстановления работы бензонасоса требуется взводить размыкатель вручную.

Управление питающими напряжениями датчиков сводится к поставке таковых ECU при полном включении его питания после включения зажигания. В первую очередь важно напряжение, подаваемое на датчик вращения, содержащий электронные компоненты. Так магнитоуправляемая микросхема большинства датчиков Холла, а также формирователь модифицированного индуктивного датчика питаются напряжением 12V.

Кроме того, многие ECU также <управляют> общей шиной датчиков в том смысле, что <минус> их цепи берется с ECU. Путаница здесь происходит, если питание датчиков замеряют как <плюс> относительно <массы> кузова/двигателя. Конечно, при отсутствии <->

В такой ситуации наибольшие затруднения могут быть вызваны тем, что, например, оказалась в обрыве по общему проводу цепь датчика температуры охлаждающей жидкости системы управления двигателем (далее — термодатчика, не путать с датчиком температуры для указателя на щитке приборов).

Если при этом датчик вращения имеет общий провод отдельного исполнения, то впрыск и зажигание как функции ECU будут присутствовать, но запуск двигателя не произойдет из-за того, что двигатель будет <залит> (дело в том, что обрыв цепи термодатчика соответствует температуре около -40…-50 град.

Управление зажиганием обычно проверяют по следствию: наличию искры. Делать это следует с помощью заведомо исправной свечи зажигания, подсоединив ее к высоковольтному проводу, снятому со свечи (проверочную свечу удобно разместить в монтажном <ухе> двигателя).

Такой способ требует от диагноста навыка оценки искры <на глаз>, т.к. условия искрообразования в цилиндре существенно отличаются от атмосферных, и если визуально слабая искра есть, то в цилиндре она может уже не образовываться. Во избежание повреждений катушки, коммутатора или ECU не рекомендуется проверять искру с высоковольтного провода на <массу> без подсоединенной свечи.

В случае отсутствия искры следует проверить, поступает ли напряжение питания на катушку зажигания (<15> контакт на схеме электропроводки)? А также проверить, появляются ли при включении стартера управляющие импульсы, приходящие от ECU или коммутатора зажигания на <1> контакт катушки (иногда обозначается как <16>)?

На выводе ECU, работающим с коммутатором зажигания, наличие импульсов проверяют осциллографом или при помощи индикатора импульсов. Индикатор не следует путать со светодиодным пробником, применяемым для считывания <медленных> кодов неисправностей:

схема пробника на светодиоде

Использовать указанный пробник для проверки импульсов в паре ECU — коммутатор не рекомендуется, т.к. для целого ряда ECU пробник создает избыточную нагрузку и подавляет управление зажиганием.

Заметим, что неисправный коммутатор точно также может блокировать работу ECU в части управления зажиганием. Поэтому, когда импульсов нет, проверку повторяют еще раз уже при отключенном коммутаторе. В зависимости от полярности управления зажиганием осциллограф в этом случае может применяться и при соединении его <массы> с < > АКБ.

Данное включение позволяет отслеживать появление сигнала типа <масса> на <висящем> выводе ECU. При таком способе будьте осторожны, не допускайте контакта корпуса осциллографа с кузовом а/м (провода подключения осциллографа могут быть удлиннены до нескольких метров, и это рекомендуется для удобства; удлинение может быть сделано обычным неэкранированным проводом, и отсутствие экранировки никак не помешает наблюдениям и замерам).

Индикатор импульсов отличается от светодиодного пробника тем, что имеет весьма высокое входное сопротивление, что практически достигается включением по входу пробника буферной микросхемы-инвертора, выход которой и управляет через транзистор светодиодом.

Здесь важно питать инвертор напряжением 5V. В этом случае индикатор сможет работать не только с импульсами амплитудой 12V, но и даст вспышки от 5-вольтовых импульсов, обычных для некоторых систем зажигания. Документация допускает применение микросхемы-инвертора как преобразователя напряжения, поэтому подача на ее вход 12-вольтовых импульсов будет безопасна для индикатора.

схема индикатора импульсов

Обратите внимание, что включение красного светодиода индикатора соответствует положительным импульсам. Назначение зеленого светодиода в том, чтобы наблюдать такие импульсы с большой длительностью относительно периода их повторения (т.н. импульсы малой скважности).

Включения красного светодиода при таких импульсах будут восприниматься на глаз как непрерывное свечение с еле заметным мерцанием. А поскольку зеленый светодиод гаснет, когда загорается красный, то в рассматриваемом случае основное время зеленый светодиод будет погашен, давая хорошо заметные короткие вспышки в паузах между импульсами.

Чтобы индикатор смог отслеживать импульсы потенциала <массы> на <висящем> контакте, следует переключить его вход на питание 5V, а импульсы подать непосредственно на 1 вывод микросхемы индикатора. Если позволит конструктив, желательно добавить в схему оксидный и керамический конденсаторы в цепь питания 5V, соединив их с массой схемы, хотя практически отсутствие этих деталей никак не сказывается.

Управление форсунками начинают проверять с измерения напряжения на их общем проводе питания при включенном зажигании — оно должно быть близко к напряжению на аккумуляторной батарее. Иногда это напряжение поставляет реле бензонасоса, в этом случае логика его появления повторяет логику включения бензонасоса данного а/м.

Проверить наличие импульсов управления можно с помощью контрольной лампы небольшой мощности, подключая ее вместо форсунки. Для этой же цели допускается использовать светодиодный пробник, однако для большей достоверности уже не следует отсоединять форсунку, чтобы была сохранена токовая нагрузка.

Напомним, что инжектор с одной форсункой называется моновпрыском (есть исключения, когда в моновпрыск ставится две форсунки для обеспечения надлежащей производительности), инжектор с несколькими, управляемыми синхронно, в том числе попарно-параллельно, называется распределенным впрыском, наконец, инжектор с несколькими форсунками, управляемыми индивидуально — последовательным впрыском.

Признак последовательного впрыска — управляющие провода форсунок каждый своего цвета. Таким образом, в последовательном впрыске проверке подлежит цепь управления каждой форсунки по отдельности. При включении стартера должны наблюдаться вспышки контрольной лампы или светодиода пробника.

Однако, в случае отсутствия напряжения на общем проводе питания форсунок, такая проверка не покажет импульсов, даже если они есть. Тогда следует взять питание непосредственно с < > АКБ — лампа или пробник покажут импульсы, если они есть, и провод управления цел.

Работу пусковой форсунки проверяют совершенно аналогично. Состояние холодного двигателя можно сымитировать, разомкнув разъем термодатчика. ECU с таким открытым входом примет температуру равной, примерно, -40:-50 град. по Цельсию. Существуют исключения.

Например, при обрыве цепи термодатчика в системе MK1.1/Audi управление пусковой форсункой действовать перестает. Таким образом, более надежным для данной проверки следует считать включение взамен термодатчика резистора с сопротивлением порядка 10 КОм.

Следует иметь в виду, что встречается неисправность ECU, при которой форсунки остаются все время открытыми и льют бензин непрерывно (из-за наличия постоянного <минуса> вместо периодических импульсов управления). В результате при долговременных попытках завести двигатель можно повредить его механику гидроударом (Digifant II ML6.1/VW). Проверьте, не увеличивается ли уровень масла вследствие того, что бензин стекает в картер двигателя?

При проверке импульсов управления на катушках и форсунках важно отслеживать ситуацию, когда импульсы присутствуют, но в пределах их длительности не происходит коммутации нагрузки с <массой> напрямую. Встречаются случаи (неисправности ECU, коммутатора), когда коммутация происходит через появившееся сопротивление.

Об этом будет свидетельствовать сравнительно пониженная яркость вспышек контрольной лампы или ненулевой потенциал импульса управления (проверяется осциллографом). Отсутствие управления хотя бы одной форсункой или катушкой, а равно ненулевой потенциал импульсов управления приведут к неровной работе двигателя, его будет трясти.

Управление побудителем (регулятором) холостого хода, если это просто клапан, можно проверить, услышав его характерное жужжание при включенном зажигании. Рука, положенная на клапан, будет чувствовать вибрацию. Если этого не происходит, следует проверить сопротивление его обмотки (обмоток, для трехпроводного).

Как правило, сопротивление обмотки составляет в разных системах управления от 4 до 40 Ом. Часто встречающаяся неисправность клапана холостого хода — его загрязнение и в результате полное или частичное заклинивание подвижной части. Клапан можно проверить с помощью специального прибора — широтно-импульсного генератора, позволяющего плавно изменять величину тока и таким образом наблюдать на клапане через штуцер визуально плавность его открытия и закрытия.

Если клапан заклинивает, его необходимо промыть специальным очистителем, а практически бывает достаточно несколько раз сполоснуть ацетоном или растворителем. Заметим, что неработающий клапан холостого хода — причина затрудненного пуска холодного двигателя.

Заслуживает упоминания случай, когда по всем электрическим проверкам клапан х.х. выглядел исправным, но неудовлетворительный х.х. был вызван именно им. По нашему мнению это можно объяснить чувствительностью некоторых систем управления к ослаблению возвратной спиральной пружины клапана вследствие старения металла пружины (SAAB).

Все прочие регуляторы холостого хода проверяются осциллографом по образцовым эпюрам из автомобильных компьютерных баз по диагностике. При проведении измерений разъем регулятора должен быть подсоединен, т.к. иначе на соответствующих ненагруженных выходах ECU генерация может отсутствовать. Наблюдают осциллограммы, изменяя частоту оборотов коленвала.

Отметим, что позиционеры дроссельной заслонки, выполненные как шаговый электродвигатель и играющие роль регулятора холостого хода (например, в моновпрыске), обладают свойством приходить в негодность после длительных периодов бездействия. Старайтесь не покупать их на разборках.

Обращаем внимание, что иногда оригинальное название throttle-valve control unit неправильно переводят как <блок управления дроссельной заслонкой>. Позиционер приводит в действие заслонку, но не управляет ею, т.к. сам является исполнительным механизмом ECU.

Логику работы заслонки задает ECU, а не TVCU. Поэтому сontrol unit в данном случае следует переводить как <узел с прИводом> (TVCU — узел дроссельной заслонки с сервоприводом в сборе). Нелишне напомнить, что электронных компонентов данное электромеханическое изделие не содержит.

Ряд систем управления двигателем особенно чувствителен к программированию х.х. Здесь имеются в виду такие системы, которые, не будучи запрограммированы по х.х., препятствуют пуску двигателя. Например, может наблюдаться сравнительно легкий пуск двигателя, но без подгазовки тут же произойдет его остановка (не путать с блокировкой штатным иммобилайзером). Или будет затруднен холодный пуск двигателя, и не будет нормального х.х.

Первая ситуация характерна для самопрограммирующихся систем с заданными начальными установками (например, MPI/Mitsubishi). Достаточно поддерживать обороты двигателя акселератором в течение 7:10 минут, и х.х. появится сам собой. После следующего полного отключения питания ECU, например, при замене АКБ, его самопрограммирование потребуется вновь.

Вторая ситуация характерна для ECU, требующих установки базовых параметров управления сервисным прибором (например, Simos/VW). Указанные установки сохраняются при последующих полных отключениях ECU, но сбиваются, если на работающем двигателе отсоединить разъем регулятора х.х. (TVCU).

На этом перечень основных проверок системы управления бензиновым двигателем, собственно, и заканчивается.

Проверка функций исполнения. Часть 2.

Как видно из текста выше, регулятор х.х. уже не имеет решающего значения для пуска двигателя (напомним, условно считалось, что стартер работает, а двигатель не заводится). Тем не менее вопросы работы дополнительных реле и дополнительных устройств, а также — лямбда-регулирования порой вызывают ничуть не меньшие затруднения в диагностике и, соответственно, тоже порой приводят к ошибочной выбраковке ECU.

Вот основные положения, которые необходимо знать, чтобы стала ясна логика работы дополнительного оборудования двигателя:

электрический подогрев впускного коллектора применяется для предотвращения выпадения росы и образования льда во впускном коллекторе во время работы холодного двигателя;

охлаждение радиатора обдувом вентилятором может происходить в разных режимах, в том числе — и некоторое время после выключения зажигания, т.к. передача тепла от поршневой группы в рубашку охлаждения запаздывает;

система вентиляции бензобака предназначена для вывода интенсивно образующихся паров бензина. Пары образуются вследствие нагрева топлива, прокачиваемого через горячую форсуночную рампу. Указанные пары отводятся в систему питания, а не в атмосферу по экологическим соображениям.

система рециркуляции отработавших газов (отвода их части в камеру сгорания) предназначена для снижения температуры горения топливной смеси и, как следствие, — уменьшения образования окислов азота (токсичны). ECU дозирует подачу топлива также с учетом работы и этой системы;

лямбда-регулирование выполняет роль обратной связи по выхлопу, чтобы ECU <видел> результат дозирования топлива. Лямбда-зонд или, иначе, кислородный датчик работает при температуре чувствительного элемента около 350 град. Цельсия. Нагрев обеспечивается либо совместным действием встроенного в зонд электрического нагревателя и тепла отработавших газов, либо только лишь теплом отработавших газов.

Лямбда-зонд реагирует на парциальное давление остаточного кислорода в отработавших газах. Реакция выражается изменением напряжения на сигнальном проводе. Если топливная смесь бедная, на выходе датчика низкий потенциал (около 0V); если смесь богатая, на выходе датчика высокий потенциал (около 1V).

Обратите внимание: часто заблуждение, что периодические колебания потенциала на выходе лямбда-зонда есть следствие якобы того, что ECU периодически меняет длительность импульсов впрыска, тем самым как бы «подлавливая» состав топливной смеси вблизи идеального (т.н. стехиометрического) состава.

Наблюдение указанных импульсов осциллографом исчерпывающе доказывает, что это не так. При бедной или богатой смеси ECU действительно меняет длительность импульсов впрыска, но не периодически, а монотонно и только до тех пор, пока кислородный датчик не выдаст колебания своего выходного сигнала.

Физика датчика такова, что при составе отработавших газов, соответствующем работе двигателя на примерно стехиометрической смеси, датчик приобретает колебания сигнального потенциала. Как только состояние колебаний на выходе датчика достигнуто, ECU начинает удерживать состав топливной смеси неизменным: раз смесь оптимизирована, никакие изменения не нужны.

Управление дополнительными реле может быть проверено фактически так же, как и управление основными реле (см. Часть 1). Состояние соответствующего выхода ECU тоже может быть отслежено маломощной контрольной лампой, подсоединенной к нему относительно 12V (изредка встречается управление положительным напряжением, что определяется схемой включения второго конца обмотки реле, тогда и лампа включается соответственно — относительно <массы>).

Так реле подогрева впускного коллектора срабатывает только на холодном двигателе, что может быть сымитировано, например, включением в разъем датчика температуры охлаждающей жидкости взамен этого датчика — потенциометра номиналом порядка 10 КОм. Вращение регулятора потенциометра от больших сопротивлений к малым будет моделировать прогрев двигателя.

Соответственно, вначале реле подогрева должно включаться (если включено зажигание), затем — отключаться. Отсутствие включения подогрева впускного коллектора может быть причиной затрудненного пуска двигателя и неустойчивых оборотов х.х. (например, PMS/Mercedes).

Реле вентилятора охлаждения радиатора включается, напротив, при горячем двигателе. Возможно двухканальное исполнение этого управления — в расчете на обдув с разными скоростями. Проверяется совершенно аналогично с помощью потенциометра, включаемого вместо термодатчика системы управления двигателем. Заметим, что лишь небольшая группа европейских а/м имеет управление указанным реле от ECU (например, Fenix 5.2/Volvo).

Реле подогрева лямбда-зонда обеспечивает включение нагревательного элемента этого датчика. В режиме прогрева двигателя указанное реле может быть отключено ECU. На прогретом двигателе оно срабатывает сразу при пуске двигателя. Во время движения а/м в некоторых переходных режимах ECU может отключать реле подогрева лямбда-зонда.

В ряде систем оно управляется не от ECU, а от одного из основных реле или просто от замка зажигания, либо вообще отсутствует как обособленный элемент. Тогда нагреватель включается одним из основных реле, что вызывает необходимость учитывать логику их работы.

Заметим, что встречающийся в литературе термин <реле перемены фазы> означает не что иное, как реле подогрева лямбда-зонда. Иногда нагреватель подключается к ECU напрямую, без реле (например, HFM/Mercedes — исполнение подогрева примечательно тут еще и тем, что при его включении на выводе ECU не потенциал <массы>, а 12V).

Лямбда-регулирование. Помимо отказа лямбда-регулирования вследствие отказа подогрева зонда та же неисправность может наступать еще и в результате исчерпания рабочего ресурса кислородного датчика, из-за ошибочной комплектации системы управления, в силу неправильной работы систем вентиляции и рециркуляции, а также в результате неисправности ECU.

Возможен временный выход из строя лямбда-регулирования в связи с продолжительной работой двигателя на обогащенной смеси. Например, отсутствие подогрева лямбда-зонда приводит к тому, что датчик не отслеживает для ECU результаты дозирования топлива, и ECU переходит на работу по резервной части программы управления двигателем.

Характерное значение СО при работе двигателя с отключенным кислородным датчиком — 8% (обратите внимание те, кто при удалении катализатора заодно отключают и передний лямбда-зонд, — это грубая ошибка). Датчик быстро забивается копотью, которая затем уже сама становится препятствием для нормального функционирования лямбда-зонда.

Восстановить датчик можно путем выжигания копоти. Для этого вначале следует выполнить прогон горячего двигателя на высоких оборотах (3000 об/мин. или более) в течение не менее 2:3 минут. Полностью восстановление произойдет после пробега 50:100 км по трассе.

Следует помнить, что лямбда-регулирование возникает не мгновенно, а после достижения лямбда-зондом рабочей температуры (задержка составляет около 1 минуты). Лямбда-зонды, не имеющие внутреннего подогревателя, выходят на рабочую температуру с запаздыванием возникновения лямбда-регулирования около 2 минут после пуска горячего двигателя .

Ресурс кислородного датчика, как правило, не превышает 70 тыс. км при удовлетворительном качестве топлива. Об остаточном ресурсе в первом приближении можно судить по амплитуде изменения напряжения на сигнальном проводе датчика, приняв за 100% амплитуду 0.9V. Изменения напряжения наблюдают при помощи осциллографа или индикатора в виде строчки светодиодов, управляемой микросхемой.

Особенность работы лямбда-регулирования состоит в том, что эта функция перестает действовать правильно задолго до того, как ресурс датчика выработан полностью. Под 70 тыс. км понимался предел именно рабочего ресурса, за которым колебания потенциала на сигнальном проводе еще отслеживаются, но по показаниям газоанализатора удовлетворительной оптимизации топливной смеси уже не происходит.

По нашему опыту такая ситуация складывается, когда остаточный ресурс датчика падает до, примерно, 60%, или если период изменения потенциала на х.х. возрастает до 3:4 секунд, см. фото. Характерно, что сканирующие устройства не показывают при этом ошибки по лямбда-зонду.

Датчик делает вид, что работает, лябда-регулирование происходит, но CO завышено.

Физически идентичный принцип работы абсолютного большинства лямбда-зондов позволяет производить их замену друг другом. При этом следует учитывать такие моменты.

зонд с внутренним подогревателем нельзя заменять на зонд без подогревателя (наоборот — можно, причем подогреватель желательно задействовать, т.к. у зондов с подогревателем более высокая рабочая температура);

отдельных комментариев заслуживает исполнение лямбда-входа ECU. Лямбда-входов всегда два на каждый зонд. Если первый, <плюсовой> вывод в паре входов сигнальный, то второй, <минусовой> часто оказывается соединен с <массой> внутренним монтажом ECU.

Но у многих ECU ни один вывод из этой пары не является <массой>. Причем схемотехника входной цепи может подразумевать как внешнее заземление, так и работу без него, когда сигнальными оказываются оба входа. Для правильной замены лямбда-зонда необходимо определить, предусмотрено ли разработчиком соединение <минусового> лямбда-входа с кузовом через зонд?

Сигнальная цепь зонда соответствует проводам черного и серого цвета. Встречаются лямбда-зонды, у которых серый провод соединен с корпусом датчика, и такие, у которых он изолирован от корпуса. За малым исключением серый провод зонда всегда соответствует <минусовому>

лямбда-входу ECU. Когда этот вход не соединен ни с одним из выводов заземления ECU, следует <прозвонить> тестером серый провод старого зонда на его корпус. Если он <масса>, а у нового датчика серый провод изолирован от корпуса, этот провод при замене датчика должен быть закорочен на <массу> добавочным соединением. Если <прозвонка> показала, что у старого зонда серый провод изолирован от корпуса, новый датчик следует подбирать также с изолированными друг от друга корпусом и серым проводом.

родственная проблема — замена ECU, имеющего собственное заземление лямбда-входа и работающего с однопроводным датчиком, на ECU без собственного заземления по указанному входу и расчитанного на работу с двухпроводным лямбда-зондом также без заземления.

Разбиение пары приводит здесь к отказу работы лямбда-регулирования, т.к. один из двух лямбда-входов ECU замены оказывается никуда не подключен. Отметим, что у обоих ECU при несовпадающих схемах цепей лямбда-входов каталожные номера могут совпадать (Buick Riviera);

на V-образных двигателях с двумя зондами не допускается сочетание, когда у одного датчика серый провод на <массе>, а у другого — нет;

практически все лямбда-зонды, поставляемые в запчасти к отечественным ВАЗ, — брак. Кроме удивительно малого рабочего ресурса, брак также находит выражение в том, что в этих датчиках встречается возникающее в процессе эксплуатации замыкание 12V внутреннего подогревателя на сигнальный провод.

При этом ECU выходит из строя по лямбда-входу. В качестве удовлетворительной альтернативы можно рекомендовать лямбда-зонды а/м <Святогор-Рено> (АЗЛК). Это фирменные зонды, отличить их от подделок можно по надписи (на подделках отсутствует). Примечание автора: последний абзац был написан в 2000 году и соответствовал действительности по крайней мере еще пару лет; нынешнее состояние рынка лямбда-зондов для отечественных а/м мне неизвестно.

Код ошибки:  elm327 obd2 wifi адаптер на АлиЭкспресс — купить онлайн по выгодной цене

Лямбда-регулирование как функция ECU может быть проверено при помощи батарейки напряжением 1:1.5V и осциллографа. Последний следует установить в ждущий режим и синхронизировать импульсом управления впрыском. Измерению подлежит длительность этого импульса (сигнал управления форсункой подается одновременно как в измерительное гнездо, так и в гнездо запуска осциллографа; форсунка остается подключенной). Для ECU с заземленным лямбда-входом порядок проверки следующий.

Вначале размыкают сигнальное соединение лямбда-зонда и ECU (по черному проводу датчика). На свободно висящем лямбда-входе ECU должно наблюдаться напряжение 0.45V, его появление свидетельствует о переходе ECU на работу по резервной части программы управления.

Отмечают длительность импульса впрыска. Затем подключают < > батарейки к лямбда-входу ECU, а ее <-> — к <массе>, и наблюдают через несколько секунд уменьшение длительности импульса впрыска (задержка различимого изменения может составить более 10 секунд).

Такая реакция будет означать стремление ECU обеднить смесь в ответ на моделирование по его лямбда-входу обогащения. Затем следует соединить этот вход ECU с <массой> и наблюдать (также с некоторой задержкой) увеличение длительности измеряемого импульса.

Такая реакция будет означать стремление ECU обогатить смесь в ответ на моделирование по его лямбда-входу ее обеднения. Тем самым проверка лямбда-регулирования как функции ECU будет проведена. Если нет осциллографа, изменение дозирования впрыска в этой проверке может быть отслежено газоанализатором. Описанная проверка ECU должна выполняться не раньше инспекции работы дополнительных устройств системы.

Управление дополнительными устройствами. Под дополнительными устройствами в данном контексте подразумеваются электромеханический клапан EVAP системы вентиляции бензобака (EVAPorative emission canister purge valve — <клапан очистки бака от выделения паров топлива>)

Клапан EVAP (вентиляции бензобака) вступает в работу после прогрева двигателя. Он имеет соединение патрубком с впускным коллектором, и наличие разрежения в этой соединительной магистрали также является условием его работы. Управление происходит импульсами потенциала <массы>.

Рука, положенная на работающий клапан, чувствует пульсации. Управление ECU этим клапаном алгоритмически связано с лямбда-регулированием, поскольку влияет на состав топливной смеси, так что неисправность клапана вентиляции способна привести к отказу лямбда-регулирования (наведенная неисправность).

проверка герметичности соединений впускного коллектора, включая патрубки (т.е. отсутствие подсоса воздуха);

проверка вакуумной магистрали клапана;

(иногда об этом пишут весьма лапидарно: <:проверить на правильность трассы и отсутствие закупорки, пережатия, порезов или отсоединения>);

проверка герметичности клапана (клапан не должен продуваться в закрытом состоянии);

проверка напряжения питания клапана;

наблюдение осциллографом импульсов управления на клапане (кроме того, можно применять пробник на светодиоде или индикатор импульсов);

замер сопротивления обмотки клапана и сравнение полученной величины с номинальной из автомобильных компьютерных баз по диагностике;

проверка целостности проводки.

Заметим, что импульсы управления EVAP не появляются, если использовать для целей индикации контрольную лампу, вставленную в разъем вместо самого клапана. Наблюдение этих импульсов должно происходить только при подключенном клапане EVAP.

Клапаны системы EGR — это перепускной механический клапан и вакуумный электромагнитный клапан. Механический клапан собственно и возвращает часть отработавших газов во впускной коллектор. А вакуумный поставляет разрежение из впускного коллектора (<вакуум>) для управления открытием механического клапана.

Рециркуляция осуществляется на двигателе, прогретом до температуры не ниже 40 град. Цельсия, чтобы не препятствовать быстрому прогреву двигателя, и только на частичных нагрузках, т.к. при значительных нагрузках снижению токсичности отдается меньший приоритет. Такие условия задаются управляющей программой ECU. Оба клапана EGR при рециркуляции открыты (больше или меньше).

Управление ECU вакуумным клапаном EGR алгоритмически связано, также как и управление клапаном EVAP, с лямбда-регулированием, поскольку тоже влияет на состав топливной смеси. Соответственно, при отказе лямбда-регулирования система EGR также подлежит проверке.

Типичными внешними проявлениями неисправности этой системы являются неустойчивый х.х. (двигатель может глохнуть), а также провал и рывок при ускорении а/м. И то, и другое объясняется неправильным дозированием топливной смеси. Проверка работы системы EGR включает в себя действия, однотипные с описанными выше при проверке работы системы вентиляции бензобака (см.). Дополнительно учитывается следующее.

Закупорка вакуумной магистрали как и подсос воздуха извне приводят к недостаточному открытию механического клапана, что проявляется в возникновении рывка при плавном разгоне а/м.

Подсос в механическом клапане вызывает приток во впускной коллектор дополнительного количества воздуха. В системах управления с расходомером воздуха — датчиком MAF (Mass Air Flow) — это количество не будет учтено в общем воздушном потоке. Наступит обеднение смеси, и на сигнальном проводе лямбда-зонда будет низкий потенциал — около 0V.

В системах управления с датчиком давления MAP (Manifold Absolute Pressure — абсолютного давления в коллекторе) приток в результате подсоса дополнительного воздуха во впускной коллектор вызывает там уменьшение разрежения. Измененное за счет подсоса разрежение приводит к несоответствию показаний датчика действительной нагрузке двигателя.

Одновременно механический клапан EGR уже не может нормально открываться, т.к. для преодоления усилия его запирающей пружины ему <не хватает вакуума>. Наступит обогащение топливной смеси, и на сигнальном проводе лямбда-зонда будет отмечается высокий потенциал — около 1V.

Если система управления двигателем оборудована как MAF-, так и MAP-датчиком, то при подсосе воздуха обогащение топливной смеси на х.х. будет сменяться ее обеднением в переходных режимах.

Проверке также подлежит выхлопная система в части соответствия ее гидравлического сопротивления номиналу. Гидравлическое сопротивление в данном случае — это сопротивление движению отработавших газов от стенок каналов выхлопного тракта. Для понимания настоящего изложения достаточно принять, что гидравлическое сопротивление единицы длины выхлопного тракта обратно пропорционально диаметру его проходного сечения.

Если, предположим, частично забился каталитический преобразователь (катализатор), его гидравлическое сопротивление увеличивается, и давление в выхлопном тракте на участке до катализатора растет, т.е. растет оно и на входе механического клапана EGR .

Это означает, что при номинальной величине открытия этого клапана, поток отработавших газов через него уже будет превышать номинал. Внешние проявления такой неисправности — провал при разгоне, а/м <не едет>. Конечно, внешне похожие проявления при забитом катализаторе будут и у а/м без системы EGR, но тонкость состоит в том, что EGR делает двигатель более чувствительным к величине гидравлического сопротивления выхлопной системы.

Соответственно, а/м с EGR более чувствительны к процедуре удаления катализатора, т.к. за счет понижения гидравлического сопротивления выхлопной системы давление на входе механического клапана снижается. В результате поток через клапан уменьшается, цилиндры работают <в обогащении>.

А это препятствует, например, реализации режима предельного ускорения (kickdown), т.к. ECU в этом режиме дозирует (длительностью открытия форсунок) резкое увеличение подачи топлива, и цилиндры окончательно <заливаются>. Таким образом, неправильное удаление подзабитого катализатора на а/м с EGR может и не привести к ожидаемому улучшению разгонной динамики.

Для полноты картины следует вспомнить, что в выхлопной системе происходит сложный акустический процесс заглушения шума выхлопа, сопровождающийся возникновением в движущихся отработавших газах вторичных звуковых волн. Дело в том, что глушение шума выхлопа принципиально происходит не в результате поглощения энергии звука специальными поглотителями (их в глушителе просто нет), а в результате отражения глушителем звуковых волн в сторону источника.

Оригинальная конфигурация элементов выхлопного тракта представляет собой настройку его волновых свойств, так что волновое давление в выпускном коллекторе оказывается зависимым от длин и сечений указанных элементов. Удаление катализатора сбивает эту настройку.

Если в результате такого изменения к моменту открытия выпускного клапана головки цилиндров вместо волны разрежения подойдет волна сжатия, это будет препятствовать опустошению камеры сгорания. Давление в выпускном коллекторе изменится, что отразится на потоке через механический клапан EGR.

Такая ситуация также входит в понятие <неправильное удаление катализатора>. Здесь тяжело удержаться от каламбура <неправильно — удалять катализатор>, если не знать реальную практику и наработанный опыт автосервисов. На самом деле известны правильные приемы в этой сфере (установка пламегасителей), но их обсуждение уже совсем далеко от темы статьи.


Тема диагностики поистине неисчерпаема в приложениях, поэтому мы далеки от мысли считать исчерпывающей и данную статью. По сути, наша главная мысль состояла в пропаганде полезности проверок вручную, не ограничиваясь применением только сканера или мотортестера.

Безусловно, статья не ставила цели умалить достоинства этих приборов. Напротив, по нашему мнению они настолько совершенны, что, как ни странно, именно это их совершенство заставляет предостеречь начинающих диагностов от пользования только данными устройствами. Слишком просто и легко получаемые результаты отучают думать.

Нам известно содержание статьи <Мотортестеры — монополия продолжается.> (ж-л <АБС-авто> №09, 2001г.):

Мы не можем безоговорочно присоединиться к этому мнению. Да, неразумно отказываться от применения оборудования, дающего готовые решения, если диагност <дорос> до работы с таким оборудованием. Но до тех пор, пока применение мультиметра и осциллографа будет изображаться как постыдное, азы диагностики так и останутся непознанными для многих специалистов этой области. Учиться не стыдно, стыдно не учиться.

Современный автомобиль с каждым годом становится более сложным, а требования к его квалифицированной диагностике — все более высокими. От выбора диагностического оборудования автомобилей зависят качество обслуживания клиентов и перспективы вашего бизнеса.

Оборудование для диагностики автомобилей можно условно разделить на две группы: аналоги дилерского оборудования для диагностики и универсальное мультимарочное диагностическое оборудование.

Одним из лучших вариантом, является покупка аналогов дилерского диагностического оборудования. Но для сервисов обслуживающих все марки автомобилей такой вариант покупки отдельного оборудования для каждой марки не всегда оправдан. В этом случае незаменимо универсальное мультимарочное оборудование для диагностики, выбор которого сводится к анализу возможностей конкретной модели оборудования в сравнении с другими приборами.

На нашем сайте вы можете выбрать и купить диагностическое оборудование автомобилей для практически любой марки. Мы всегда готовы помочь в выборе оборудования и оказать полную техническую поддержку при работе с диагностическим оборудованием.

Мы доставляем диагностическое оборудование по всей территории России, в том числе и почтой наложенным платежом.

Начнем с того зачем применяется диагностическое оборудование. Расскажем подробнее об автосканерах для диагностики автомобилей. Во-первых стоит отметить что у слова «автосканер» есть синонимы: диагностический сканер, сканер для диагностики, авто сканер, автомобильный сканер, auto-scaner, auto scanner, autoscanner, auto scaner — при использовании этих слов всегда подразумевают одно и то же устройство.

Этим устройством всегдя является компьютер (стационарный, переносной, карманный), имеющий кабель для подключения к диагностическому разъему авто и предустановленное программное обеспечение для диагностики автомобиля, в некоторых случаях автосканер не является самостоятельным устройством и работает в связке с обычным пользовательским компьютером.

Основным назначением таких автосканеров является диагностика автомобиля посредством подключения прибора через диагностический разъем к ЭБУ(электронному блоку управления), в частности поиск неисправностей с использованием данных, получаемых с датчиков установленных в различных узлах автомобиля: двигатель, трансмиссия, шасси, кузов и т.д.

Автосканер получает данные в виде кодов ошибок, которым соответствует та или иная неисправность (чтение кодов ошибок). Кроме того диагностический сканер позволяет определить неисправность тех узлов и систем, в которых отсутствуют датчики, по косвенным признакам — т.е несколько незначительных неисправностей могут повлечь более значительную неисправность доступ к диагностике которой напрямую будет отсутствовать, но при диагностике так или иначе причина неисправности будет обнаружена.

Комплексная диагностика — пожалуй основная незаменимая функция всех автосканеров, она позволяет осуществлять диагностику, поиск ошибок и неисправностей, рассматривая автомобиль как систему взаимосвязанных узлов и агрегатов, осуществляя при этом анализ с учетом связей диагностируемых элементов.

Профессиональное диагностическое оборудование, в отличие от мультимарочного (универсального оборудования) поддерживает полнофункциональную и доскональную работу с автомобилями конкретных производителей, например BMW, Mercedes-Benz, Audi, Ford, Opel, Honda и т.д.

Профессиональное диагностическое оборудование является наиболее подходящим для дилерских сервисных центров и СТО специализирующихся на профессиональной, полноценной и качественной диагностике автомобилей ведущих мировых производителей. Профессиональные диагностические сканеры гарантируют поддержку работы только с конкретными марками автомобилей, но в отдельных случаях профессиональные автосканеры работают с автомобилями одного автоконцерна, например General Motors: Cadillac, Hummer, Chevrolet, Saab, GMC и пр., или Daimler AG: Mercedes-Benz, Mercedes-AMG, Smart, Maybach.

Мы предлагаем к вашему вниманию более 20 профессиональных диагностических приборов для большинства автомобилей, произведенных на крупнейших автозаводах мира: от Audi до Volvo. Средняя цена на профессиональное диагностическое оборудования равна 81 000 руб.

Портативные автосканеры это самый дешевый и самый простой способ продиагностировать автомобиль, идеально подходит для гаражной диагностики, простой диагностики на мелких СТО. Портативное диагностическое оборудование является простым в использовании, как правило имеет монохромный дисплей и компактный размер, что позволяет легко переносить такой автосканер.

Портативный автосканер это готовое к эксплуатации устройство, не требующее инсталляции программы для диагностики — она уже предустановлена. К минусам можно отнести лишь то что функционал у таких диагностических приборов очень ограничен, в основном это чтение и сброс кодов ошибок.

В каталоге диагностического оборудования к вашему выбору 8 портативных автосканеров, средняя цена на которые составляет 7 000 руб.

Автосканеры на основе компьютера или ноутбука, пожалуй, самое выгодное приобретение которое может сделать небольшой автосервис, станция технического обслуживания атвомобилей или просто автолюбитель. За счет того что техническое устройство автосканера состоит только из диагностического адаптера и набора кабелей, он имеет низкую стоимость.

Но при этом с использованием стационарного компьютера или ноутбука на котором установлена программа дли диагностики, поставляемая с автосканером, дает возможность использовать все возможное программные функции современных автосканеров. По цене автосканеры на базе компьютера можно сравнить с портативными автосканерами, но их нельзя сравнивать по функциональности.

Так же как и портативные автосканеры, диагностические сканеры на основе компьютера имеют малый вес и размер. Такие автосканеры подключаются к любому компьютеру посредством универсальной последовательной шины (USB) или последовательного порта (Com port).

В данном разделе интернет магазина автосканеры.ру собраны автосканеры из двух других разделов: портативные автосканеры и автосканеры на базе ПК. Автосканеры, осуществляющие диагностику по протоколу OBD 2 это дешевые приборы с широкой применяемостью (картой покрытия) — это напрямую связано с протоколом по которому работают такие автосканеры — On Board Diagnostic version 2. В этом разделе расположено 5 приборов для диагностики, средняя цена на них — 5 800 руб.

Стандартные протоколы связи для диагностики

Итак, система OBD II распознает несколько различных протоколов. Здесь мы обсудим только три из них, которые используются в автомобилях, выпускаемых в США. Это протоколы J1850-VPW, J1850-PWM и ISO1941. Все блоки управления автомобиля связаны с кабелем, называемым диагностической шиной, в результате чего образуется сеть.

К этой шине можно подключить диагностический сканер. Такой сканер отправляет сигналы конкретному блоку управления, с которым он должен обмениваться сообщениями, и получает ответные сигналы от этого блока управления. Обмен сообщениями продолжается до тех пор, пока сканер не прекратит сеанс связи или не будет отсоединен.

Так, сканер может спросить блок управления о том, какие он видит ошибки, а тот отвечает ему на этот вопрос. Такой простой обмен сообщениями должен происходить на основе некоторого протокола. С точки зрения дилетанта, протокол представляет собой набор правил, которые нужно выполнять для того, чтобы в сети можно было передать сообщение.

Классификация протоколов Ассоциация автомобильных инженеров (SAE) определила три различных класса протоколов: протокол класса A, протокол класса B и протокол класса C. Протокол класса A — самый медленный из трех; он может обеспечивать скорость 10 000 байт/с или 10 Кбайт/с.

В стандарте ISO9141 используется протокол класса A. Протокол класса B в 10 раз быстрее; он поддерживает обмен сообщениями со скоростью 100 Кбайт/с. Стандарт SAE J1850 представляет собой протокол класса B. Протокол класса C обеспечивает скорость 1 Мбайт/c.

Наиболее широко используемый стандарт класса C для автомобилей — это протокол CAN (Controller Area Network — сеть зоны контроллеров). В будущем должны появиться протоколы с большей производительностью — от 1 до 10 Мбайт/с. По мере возрастания потребностей в увеличении полосы пропускания и производительности может появиться класс D.

При работе в сети с протоколами класса C (а в будущем — с протоколами класса D) мы можем использовать оптическое волокно. Протокол J1850 PWM Существует два вида протокола J1850. Первый из них является высокоскоростным и обеспечивает производительность в 41,6 Кбайт/с.

Данный протокол носит название PWM (Pulse Width Modulation — модуляция ширины импульса). Он используется в марках Ford, Jaguar и Mazda. Впервые такой тип связи был применен в автомобилях Ford. В соответствии с протоколом PWM сигналы передаются по двум проводам, подсоединенным к контактам 2 и 10 диагностического разъема.

Протокол ISO9141Третий из обсуждаемых нами протоколов диагностики — ISO9141. Он разработан ISO и применяется в большинстве европейских и азиатских автомобилей, а также в некоторых автомобилях Chrysler. Протокол ISO9141 не так сложен, как стандарты J1850.

Протокол J1850 VPW Другой разновидностью протокола диагностики J1850 является VPW (Variable Pulse Width — переменная ширина импульса). Протокол VPW поддерживает передачу данных со скоростью 10,4 Кбайт/с и применяется в автомобилях марок General Motors (GM) и Chrysler.

С точки зрения дилетанта, OBD II использует стандартный диагностический коммуникационный протокол, так как Агентство по защите окружающей среды (EPA) потребовало, чтобы автосервисы получили стандартный способ, позволяющий качественно диагностировать и ремонтировать автомобили без затрат на покупку дилерского оборудования. Перечисленные протоколы будут более подробно описаны в последующих публикациях.

Лампочка индикации неисправностейКогда система управления двигателем обнаруживает проблему с составом выхлопных газов, на приборном щитке загорается надпись Check Engine (“Проверьте двигатель”). Этот индикатор называется лампочкой индикации неисправностей (Malfunction Indication Light — MIL).

Назначение индикатора состоит в информировании водителя о том, что в процессе работы системы управления двигателем возникла проблема. Если загорается индикатор, не стоит впадать в панику! Вашей жизни ничто не угрожает, и двигатель не взорвется. Паниковать надо тогда, когда загорается индикатор масла или предупреждение о перегреве двигателя.

С точки зрения дилетанта, индикатор неисправностей MIL загорается при возникновении проблемы в системе управления двигателем, например при неисправности искрового промежутка или загрязнении абсорбера. В принципе, это может быть любая неисправность, приводящая к повышенному выбросу вредных примесей в атмосферу.

Для того чтобы проверить функционирование индикатора OBD II MIL, следует включить зажигание (когда на приборном щитке загораются все индикаторы). При этом загорается и индикатор MIL. Спецификация OBD II требует, чтобы этот индикатор горел некоторое время.

Некоторые производители делают так, чтобы индикатор оставался включенным, а другие — чтобы он выключался по истечении определенного промежутка времени. При запуске двигателя и отсутствии в нем неисправностей лампочка “Check Engine” должна погаснуть.

Лампочка “Check Engine” не обязательно загорается при первом появлении неисправности. Срабатывание этого индикатора зависит от того, насколько серьезна неисправность. Если она считается серьезной и ее устранение не терпит отлагательств, лампочка загорается немедленно.

Такая неисправность относится к разряду активных (Active). В случае если устранение неисправности может быть отложено, индикатор не горит и неисправности присваивается сохраняемый статус (Stored). Для того чтобы такая неисправность стала активной, она должна проявиться в течение нескольких драйв-циклов.

В течение этого процесса должны быть выполнены все бортовые тестовые процедуры, относящиеся к выхлопным газам. Различные автомобили имеют двигатели разного размера, и поэтому драйв-циклы для них могут несколько различаться. Как правило, если проблема возникает в течение трех драйв-циклов, то лампочка Check Engine должна загораться.

Если же три драйв-цикла не выявляют неисправности, лампочка гаснет. Если лампочка Check Engine загорается, а затем гаснет, — не следует беспокоиться. Информация об ошибке сохраняется в памяти и может быть извлечена оттуда с помощью сканера. Итак, имеются два статуса неисправностей: сохраняемый и активный.

Альфа-указатель DTC Как видим, каждый символ имеет свое назначение. Первый символ принято называть альфа-указателем DTC. Этот символ указывает, в какой части автомобиля обнаружена неисправность. Выбор символа (P, B, C или U) определяется диагностируемым блоком управления.

  • P (двигатель и трансмиссия);
  • B (кузов);
  • С (шасси);
  • U (сетевые коммуникации).

Стандартный набор диагностических кодов ошибок (DTC)В OBD II неисправность описывается с помощью диагностических кодов неисправностей (Diagnostic Trouble Code — DTC). Коды DTC в соответствии со спецификацией J2021 представляют собой комбинацию одной буквы и четырех цифр. На рис. 3 показано, что означает каждый символ. Рис. 3. Код ошибки

Типы кодовВторой символ — наиболее противоречивый. Он показывает, что определил код. 0 (известный как код P0). Базовый, открытый код неисправности, определенный Ассоциацией автомобильных инженеров (SAE). 1 (или код P1). Код неисправности, определяемый производителем автомобиля.

Большинство сканеров не могут распознавать описание или текст кодов P1. Однако такой сканер, как, например, Hellion, способен распознать большинство из них. Ассоциация SAE определила исходный перечень диагностических кодов ошибок DTC. Однако производители стали говорить о том, что у них уже есть собственные системы, при этом ни одна система не похожа на другую.

Система, в которой обнаружена неисправностьТретий символ обозначает систему, где обнаружена неисправность. Об этом символе знают меньше, но он относится к наиболее полезным. Глядя на него, мы сразу можем сказать, какая система неисправна, даже не глядя на текст ошибки. Третий символ помогает быстро идентифицировать область, где возникла проблема, не зная точного описания кода ошибки.

  • Топливно-воздушная система.
  • Топливная система (например, инжекторы).
  • Система зажигания.
  • Вспомогательная система ограничения выбросов, например: клапан рециркуляции выхлопных газов (Exhaust Gas Recirculation System — EGR), система впуска воздуха в выпускной коллектор двигателя (Air Injection Reaction System — AIR), каталитический конвертер или система вентиляции топливного бака (Evaporative Emission System — EVAP).
  • Система управления скоростным режимом или холостым ходом, а также соответствующие вспомогательные системы.
  • Бортовая компьютерная система: модуль управления двигателем (Power-train Control Module — PCM) или сеть зоны контроллеров (CAN).
  • Трансмиссия или ведущий мост.
  • Трансмиссия или ведущий мост.

Индивидуальный код ошибкиЧетвертый и пятый символы нужно рассматривать совместно. Они обычно соответствуют старым кодам ошибок OBDI. Эти коды, как правило, состоят из двух цифр. В системе OBD II также берутся эти две цифры и вставляются в конец кода ошибки — так ошибки легче различать.

Теперь, когда мы ознакомились с тем, как формируется стандартный набор диагностических кодов ошибок (DTC), рассмотрим в качестве примера код DTC P0301. Даже не глядя на текст ошибки, можно понять, в чем она состоит. Буква P говорит о том, что ошибка возникла в двигателе.

Цифра 0 позволяет заключить, что это базовая ошибка. Далее следует цифра 3, относящаяся к системе зажигания. В конце мы имеем пару цифр 01. В данном случае эта пара цифр говорит нам о том, в каком цилиндре имеет место пропуск зажигания. Собирая все эти сведения воедино, мы можем сказать, что возникла неисправность двигателя с пропусками зажигания в первом цилиндре.

Самодиагностика неисправностей, приводящих к повышенной токсичности выбросовПрограммное обеспечение, управляющее процессом самодиагностики, называется по-разному. Производители автомобилей Ford и GM именуют его администратором диагностики (Diagnostic Executive)

, а Daimler Chrysler — диспетчером задач (Task Manager). Это набор программ, совместимых с OBD II, которые выполняются в блоке управления двигателем (PCM) и наблюдают за всем, что происходит вокруг. Блок управления двигателем — самая настоящая рабочая лошадка!

В течение каждой микросекунды он выполняет огромное количество вычислений и должен определять, когда следует открывать и закрывать инжекторы, когда нужно подавать напряжение на катушку зажигания, каково должно быть опережение угла зажигания и т. д. Во время этого процесса программное обеспечение OBD II проверяет, все ли перечисленные характеристики соответствуют нормам. Это программное обеспечение:

  • управляет состоянием лампочки Check Engine;
  • сохраняет коды ошибок;
  • проверяет драйв-циклы, определяющие генерацию кодов ошибок;
  • запускает и выполняет мониторы компонентов;
  • определяет приоритет мониторов;
  • обновляет статус готовности мониторов;
  • выводит тестовые результаты для мониторов;
  • не допускает конфликтов между мониторами.

Как показывает этот перечень, для того чтобы программное обеспечение выполняло возложенные на него задачи, оно должно обеспечивать и завершать работу мониторов в системе управления двигателем. Что же такое монитор? Его можно рассматривать как тест, выполняемый системой OBD II в блоке управления двигателем (PCM) для оценки правильности функционирования компонентов, ответственных за состав выбросов. Согласно OBD II, имеется 2 типа мониторов:

  1. непрерывный монитор (работает все время, пока выполняется соответствующее условие);
  2. дискретный монитор (срабатывает один раз в течение поездки).

Мониторы — очень важное понятие для OBD II. Они созданы для тестирования конкретных компонентов и обнаружения неисправностей в этих компонентов. Если компонент не может пройти тест, соответствующий код ошибки заносится в блок управления двигателем.

Стандартизация названий компонентовВ любой области существуют различные названия и жаргонные словечки для обозначения одного и того же понятия. Возьмем, к примеру, код ошибки. Некоторые называют его кодом, другие — ошибкой, третьи — “штуковиной, которая сломалась”.

Обозначение DTC — это и есть ошибка, код или “штуковина, которая сломалась”. До появления OBD II каждый производитель придумывал свои имена компонентам автомобиля. Очень трудно было понять терминологию Ассоциации автомобильных инженеров (SAE) тому, кто пользовался названиями, принятыми в Европе.

Теперь же благодаря OBD II во всех автомобилях должны использоваться стандартные имена компонентов. Жизнь стала намного легче для тех, кто ремонтирует автомобили и заказывает запасные части. Как всегда, когда во что-то вмешивается правительственная организация, сокращения и жаргон стали обязательными.

Ассоциация SAE выпустила стандартизованный список терминов для компонентов автомобиля, относящихся к OBD II. Этот стандарт называется J1930. Сегодня по дорогам ездят миллионы автомобилей, в которых применяется система OBD II. Нравится это кому-то или нет — OBD II влияет на жизнь каждого человека, делая более чистым воздух вокруг нас.

Мы проживаем не в Европе и уж тем более не в США, но данные процессы начинают затрагивать и российский рынок диагностики. Численность подержанных автомобилей, удовлетворяющих требованиям OBDII / EOBD, увеличивается очень быстро. Своё слово вносят дилеры, продающие новые автомобили, хотя как раз в этом сегменте многие модели адаптированы под более старые нормы EURO 2 (которые, кстати, до сих пор в России не приняты).

Старт был сделан. Как нам увеличить интеграцию новых стандартов? Здесь не имеется ввиду экология и прочее — для России эта составляющая не играет роли, но с течением времени эта тема находит все больше поддержки как у чиновников так и автовладельцев.

Суть вопроса в диагностике. Что дает OBD II  автосервису? Насколько необходим данный стандарт в реальной практике, каковы его плюсы и минусы? Каким требованиям должны удовлетворять диагностические приборы? Прежде всего надо чётко осознавать, что главное отличие данной системы само диагностики от всех других -это жёсткая ориентация на токсичность, являющуюся неотъемлемой составляющей эксплуатации любого автомобиля.

В это понятие входят и вредные вещества, содержащиеся в выхлопных газах, и испарения топлива, и утечка хладагента из системы кондиционирования. Такая ориентация определяет все сильные и слабые стороны стандартов OBD II и EOBD. Поскольку не все системы автомобиля и не все неисправности имеют прямое влияние на токсичность, это сужает сферу действия стандарта.

Но, с другой стороны, самым сложным и самым важным устройством автомобиля был и остаётся силовой привод (т.е. двигатель и трансмиссия). И уже только этого вполне достаточно, чтобы констатировать важность данного применения. К тому же система управления силовым приводом все больше интегрируется с другими си-стемами автомобиля, а вместе с этим расширяется сфера применения OBD II.

И все же пока в подавляющем большинстве случаев можно говорить о том, что реальное воплощение и использование стандартов OBD II / EOBD лежит в нише диагностики двигателя (реже коробки передач).Вторым важным отличием этого стандарта является унификация.

Пусть неполная, с массой оговорок, но все же очень полезная и важная. Именно в этом заключается главная притягательность OBD II. Стандартный диагностический разъём, унифицированные протоколы обмена, единая система обозначения кодов неисправностей, единая идеология само диагностики и многое другое.

Для производителей диагностического оборудования такая унификация позволяет создавать недорогие универсальные приборы, для специалистов -резко сократить затраты на приобретение оборудования и информации, отработать типовые процедуры диагностирования, универсальные в полном смысле этогослова.

Разработка OBD II Разработка OBD II началась 1988 г, автомобили отвечавшие требованиям OBD II, начали выпускаться с 1994 года, а с 1996 года он окончательно вступил в силу и стал обязательным для всех легковых и лёгких коммерческих ТС, продаваемых на рынке США.

Несколько замечаний по поводу унификации. У многих сложилась устойчивая ассоциация: OBD II — это разъём 16-pin (его так и называют — «обидишный»). Если автомобиль из Америки, вопросов нет. А вот с Европой чуть сложнее. Ряд европейских производителей (Opel, Ford,VAG,) применяют такой разъём начиная с 1995 года (напомним, что тогда в Европе не было протокола EOBD).

Диагностика этих автомобилей осуществляется исключительно по заводским протоколам обмена. Почти так же обстоит дело с некоторыми «японцами» и «корейцами»(Mitsubishi— самый яркий пример). Но были и такие «европейцы», которые вполне реально поддерживали протокол OBD II уже начиная с 1996 года, например многие модели Porsche, Volvo, SAAB, Jaguar.

А вот об унификации протокола связи, или, попросту говоря, языка, на котором «разговаривают» блок управления и сканер, можно говорить только на прикладном уровне. Коммуникационный стандарт единым делать не стали. Разрешено использовать любой из четырёх распространённых протоколов — SAE J1850 VPW, SAE J1850 PWM, ISO 14230–4, ISO 9141–2.

В последнее время к этим протоколам добавился ещё один — это ISO 15765–4, обеспечивающий обмен данными с использованием CAN-шины (этот протокол будет доминирующим на новых автомобилях).Собственно, диагносту совершенно не обязательно знать, в чем заключается отличие между этими протоколами.

Гораздо важнее то, чтобы имеющийся в наличии сканер мог автоматически определять используемый протокол, и, соответственно, мог бы корректно «разговаривать» с блоком на языке этого протокола. Поэтому вполне естественно, что унификация затронула и требования к диагностическим приборам.

Базовые требования к сканеру OBD-II изложены в стандарте J1978. Сканер, соответствующий этим требованиям принято называть GST. Такой сканер не обязательно должен быть специальным. Функции GST может выполнять любой универсальный (т.е. мультимарочный) и даже дилерский прибор, если он обладает соответствующим программным обеспечением.

Очень важным достижением нового стандарта диагностики OBD II является разработка единой идеологии само диагностики. На блок управления возлагается целый ряд специальных функций, обеспечивающих тщательный контроль функционирования всех систем силового агрегата.

Количество и качество диагностических функций по сравнению с блоками предыдущего поколения выросло кардинально. Рамки данной стати не позволяют подробно рассмотреть все аспекты функционирования блока управления. Нас больше интересует, как использовать его диагностические возможности в повседневной работе.

  • Параметры в реальном времени
  • «Сохраненный кадр параметров»
  • Мониторинг для непостоянно тестируемых систем
  • Результаты мониторинга для постоянно тестируемых систем
  • Управление исполнительными компонентами
  • Идентификационныепараметры автомобиля
  • Считывание кодов неисправностей
  • Стирание кодов неисправностей, сброс статуса мониторов
  • Мониторинг датчика кислорода

Рассмотрим эти режимы более подробно, поскольку именно чёткое понимание назначения и особенностей каждого режима, является ключом к пониманию функционирования системы OBD II в. целом.

Оцените статью
Добавить комментарий